The nuclear industry in Canada contributes $17B annually to the Canadian economy and provides 76,000 jobs.

$17 Billion

The nuclear industry in Canada contributes $17B to the Canadian economy and provides 76,000 jobs.

33,000 jobs

3,000 jobs

19 CANUD reactors at 4 nuclear power generating stations globally in nuclear power capacity

- **Small Modular Reactors (SMRs)**
 - The next wave of Canadian nuclear innovation: smaller, simpler and cheaper.
 - Canada is well-positioned to lead and capture a share of the emerging global market, operating on 4 continents, representing 5% of the world nuclear capacity.

- **SMR Project Opportunities in Late 2020s or early 2030s**

Key SMR initiatives to ensure policy readiness and chart a path forward for SMR technology in Canada include:

- Canada’s SMR Readiness (2019)
- Provincial MOU between ON, NB and SK on SMRs (2019)
- Canada’s SMR Action Plan (2020)

- Leaders in nuclear research and technology, Canadian-developed CANUD reactor technology operating on 4 continents, representing 5% of the world nuclear capacity.

- Strong nuclear science and technology presence across Canada: 6 research reactors and two technologies support R&D, and produce isotopes for medical and industrial applications, including more than 50% of the world’s supply of Cobalt-60.

Support for a robust supply chain of over 240 companies, including 200 SMEs, and an R&D network of laboratories and universities.

- $28 B investment planned and ongoing to extend the life of Ontario’s reactors - largest infrastructure projects in Canada.

World-leading innovators are pursuing the on-grid and mining markets in Canada for deployment in the late 2020s to early 2030s.

- 12 vendors are participating in CNEC’s Vendor Design Review
- Several vendors are working directly with utilities

SMR Sites

- Not Currently Under Review
- Under Review

- Potential SMR Sites / Under Review
- Not Currently Under Review

SMR Sites

- OPG Darlington On–Grid SMR (ON)
- NB Power Advanced SMR & Waste Management Facility
- Chalk River On-Grid Modular Reactor
- DFO Darlington On-Grid SMR (ON)

Nuclear Energy

A Key Part of Canada’s Climate Strategy and a Driver for Clean Growth

- Nuclear electricity in Canada displaces about 50 million tonnes of GHG emissions annually.
- Electricity from Canadian uranium offsets more than 50 million tonnes of GHG emissions worldwide.

Uranium Mining & Milling

- Uranium Processing - Refining, Conversion, and Fuel Fabrication
- Nuclear Power Generation and Nuclear Science & Technology
- Waste Management & Long-term Management

Shaded or Decommissioned Sites

- Inactive or Decommissioned Uranium Mines and Tailings Sites

-Yellowcake is refined at Blind River, Ontario, to produce uranium trioxide.

- Uranium ore is used to fuel CANUD reactors.

- UF₆ is exported for enrichment and use in foreign light water reactors.

- Uranium is used to fuel CANUD nuclear reactors.

- UF₆ is re/refined at Blind River, Ontario, to produce uranium trioxide.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium ore is used to fuel CANUD nuclear reactors.

- UF₆ is exported for enrichment and use in foreign light water reactors.

- Uranium is used to fuel CANUD nuclear reactors.

- UF₆ is re/refined at Blind River, Ontario, to produce uranium trioxide.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium ore is used to fuel CANUD nuclear reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- Yellowcake is refined at Blind River, Ontario, to produce uranium trioxide.

- Uranium ore is used to fuel CANUD nuclear reactors.

- UF₆ is exported for enrichment and use in foreign light water reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium ore is used to fuel CANUD nuclear reactors.

- UF₆ is exported for enrichment and use in foreign light water reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- At plants in southern Ontario, fuel pellets are loaded into fuelas and assembled into fuel bundles for CANUD reactors.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.

- Uranium mine and mill tailings waste is produced throughout the nuclear fuel cycle and safely managed in licensed storage facilities.
Governance Framework

Policy Makers
- **Federal**
 - Nuclear energy is under federal jurisdiction.
- **Provincial & Territorial**
 - Provinces and territories have ownership over the natural resources and provincial grids that lie within their boundaries.

National Regulator
- **Canadian Nuclear Safety Commission**
 - Regulates the use of nuclear energy and materials to protect health, safety, security and the environment; to implement Canada’s international commitments on the peaceful use of nuclear energy; and to disseminate objective scientific, technical and regulatory information to the public.
 - The CNSC is an independent administrative tribunal set up at arm’s length from government.

Nuclear Sector
- **Uranium Companies**
- **Nuclear Energy Producers**
- **Nuclear Science & Technology**
- **Nuclear Supply Chain**
 - A number of companies stretching along the Quebec City-Windsor Corridor and in other locations across Canada

Key Federal Legislation
- Nuclear Safety and Control Act
- Nuclear Fuel Waste Act
- Nuclear Liability and Compensation Act
- Nuclear Energy Act
- Export and Import Permits Act

Key Policies
- Natural Resources
 - Canada is the lead department on behalf of the Minister of Natural Resources.
 - Other federal departments also contribute to policy development.
- Uranium
 - Nuclear Energy
 - Nuclear Research and Development and Science and Technology
 - Civil Nuclear Liability
 - Radioactive Waste Management

Key Federal Legislation
- Uranium
- Nuclear Energy
- Nuclear Research and Development and Science and Technology
- Civil Nuclear Liability
- Radioactive Waste Management

Key Policies
- Canadian’s 1996 Policy Framework on Radioactive Waste
- Nuclear Non-Proliferation Policy
- Non-Resident Ownership Policy in the uranium mining sector

Provinces choose approaches and technologies for electricity generation based on their natural endowments and regional requirements.