

Canadian Certified Reference Materials Project

CCRMP

CANMET Mining and Mineral Sciences Laboratories 555 Booth Street, Ottawa, Ontario, Canada K1A 0G1 Tel.: (613) 995-4738, Fax: (613) 943-0573 E-mail: ccrmp@nrcan.gc.ca www.ccrmp.ca

#### PCMRC

Projet canadien de matériaux de référence certifiés

Laboratoires des mines et sciences minérales de CANMET 555, rue Booth, Ottawa (Ontario) Canada K1A 0G1 Tél. : (613) 995-4738, Téléc. : (613) 943-0573 Courriel : pcmrc@rncan.gc.ca www.pcmrc.ca

# Stream Sediment Reference Materials STSD-1 to STSD-4

STSD-1 to STSD-4 were chosen to represent typical stream sediments from various geochemical environments in Efforts Canada. made were to incorporate a range of concentrations for substantial number of а elements. Collection was carried out by the Geological Survey of Canada using shovels and by hand. The samples were blended and bottled prepared, at CANMET. Information on each sample follows. The National Topographic System (NTS) for identifying maps in Canada is used.

**<u>STSD-1</u>**: This sample is a single lot from Lavant Creek (31F) in Ontario.

**STSD-2**: This sample is a mixture of a lot from Hirok Stream (104P) and a composite lot from 93A and 93B; both lots are from British Columbia. Composites were produced by mixing unused portions of regional survey samples collected in the corresponding NTS sheets.

**<u>STSD-3</u>**: This sample is made from the same lots as STSD-2 with the addition of a lot from Lavant Creek (31F) in Ontario.

**<u>STSD-4</u>**: This sample is made from a mixture of a lot which is a composite sample from 31F in Ontario and a lot from

the same composite from British Columbia used for STSD-2.

Thirty-five laboratories provided analytical data and provisionally recommended values are given for 65 elements. Besides "total" values, the samples were also characterized for values relating to specific types of partial extraction wherein the sample is not totally dissolved, particularly the silicate components. Geochemists and environmental scientists frequently perform this type of analysis, and these reference samples should prove useful to them.

A publication giving complete details on these stream sediment reference materials is available on request to:

> Coordinator, CCRMP CANMET (NRCan) 555 Booth Street Ottawa, Ontario, Canada K1A 0G1

 Telephone:
 (613) 995-4738

 Fax:
 (613) 943-0573

 E-mail:
 ccrmp@nrcan.gc.ca



## Stream Sediments STSD-1 to STSD-4

| Constituent                    | STSD-1 | STSD-2 | STSD-3 | STSD-4 |
|--------------------------------|--------|--------|--------|--------|
| SiO <sub>2</sub>               | 42.5   | 53.7   | 48.6   | 58.9   |
| $AI_2O_3$                      | 9      | 16.1   | 10.9   | 12.1   |
| Fe <sub>2</sub> O <sub>3</sub> | 6.5    | 7.5    | 6.2    | 5.7    |
| MgO                            | 2.2    | 3.1    | 2.2    | 2.1    |
| CaO                            | 3.6    | 4      | 3.3    | 4      |
| Na <sub>2</sub> O              | 1.8    | 1.7    | 1.5    | 2.7    |
| K <sub>2</sub> O               | 1.2    | 2.1    | 1.8    | 1.6    |
| MnO                            | 0.5    | 0.1    | 0.3    | 0.2    |
| TiO <sub>2</sub>               | 0.8    | 0.8    | 0.7    | 0.8    |
| $P_2O_5$                       | 0.4    | 0.3    | 0.4    | 0.2    |
| LOI (1000°C)                   | 31.6   | 10.3   | 23.6   | 11.6   |
| Sum                            | 100.1  | 99.7   | 99.5   | 99.9   |

#### Provisional Values for Major and Minor Elements Expressed as Per Cent Oxides

#### Provisional Values for Partial Extraction Elements Concentrated HNO<sub>3</sub> - Concentrated HCI μg/g (except where noted)

| Constituent | STSD-1 | STSD-2 | STSD-3 | STSD-4 |
|-------------|--------|--------|--------|--------|
| Ag          | 0.3    | 0.5    | 0.4    | 0.3    |
| As          | 17     | 32     | 22     | 11     |
| Cd          | 0.8    | 0.8    | 1      | 0.6    |
| Со          | 14     | 17     | 14     | 11     |
| Cr          | 28     | 50     | 34     | 30     |
| Cu          | 36     | 43     | 38     | 66     |
| Fe (%)      | 3.5    | 4.1    | 3.4    | 2.6    |
| Hg (ng/g)   | 110    | 46     | 90     | 930    |
| Mn          | 3740   | 720    | 2630   | 1200   |
| Мо          | 2      | 13     | 7      | 2      |
| Ni          | 18     | 47     | 25     | 23     |
| Pb          | 34     | 66     | 39     | 13     |
| Sb          | 2      | 2.6    | 2.4    | 3.6    |
| V           | 47     | 58     | 61     | 51     |
| Zn          | 165    | 216    | 192    | 82     |

| μg/g (except where noted)               |            |          |            |            |  |  |  |  |
|-----------------------------------------|------------|----------|------------|------------|--|--|--|--|
| Constituent STSD-1 STSD-2 STSD-3 STSD-4 |            |          |            |            |  |  |  |  |
| Ag                                      | <0.5       | 0.5      | <0.5       | <0.5       |  |  |  |  |
| As                                      | 23         | 42       | 28         | 15         |  |  |  |  |
| Au (ng/g)                               | 8          | 3        | 7          | 4          |  |  |  |  |
| B                                       | 89         | 42       | 82         | 46         |  |  |  |  |
| Ba                                      | 630        | 540      | 1490       | 2000       |  |  |  |  |
| Be                                      | 1.6        | 5.2      | 2.6        | 1.7        |  |  |  |  |
| Br                                      | 40         | 4        | 2.0        | 13         |  |  |  |  |
| C (%)                                   | 12.3       | 1.6      | 8.4        | 4.1        |  |  |  |  |
| Ce                                      | 51         | 93       | 63         | 44         |  |  |  |  |
| Co                                      | 17         | 19       | 16         | 13         |  |  |  |  |
| Cr                                      | 67         | 116      | 80         | 93         |  |  |  |  |
| Cs                                      | 1.8        | 12       | 5.2        | 93<br>1.9  |  |  |  |  |
| Cu                                      | 36         | 47       | 39         | 65         |  |  |  |  |
|                                         |            |          |            |            |  |  |  |  |
| Dy                                      | 5.6        | 6.5<br>2 | 5.4        | 3.8<br>1.2 |  |  |  |  |
| Eu<br>F                                 | 1.6        | 2<br>940 | 1.3        |            |  |  |  |  |
|                                         | 950        |          | 850        | 380        |  |  |  |  |
| Fe (%)                                  | 4.7        | 5.2      | 4.4        | 4.1        |  |  |  |  |
| H <sub>2</sub> O- (%)                   | 4.46       | 2.43     | 3.47       | 1.73       |  |  |  |  |
| Hf                                      | 6.1        | 5        | 5.1        | 5.5        |  |  |  |  |
| La                                      | 30         | 59       | 39         | 24         |  |  |  |  |
|                                         | 11         | 65       | 23         | 14         |  |  |  |  |
| LOI (500°C)(%)                          | 29.7       | 8.7      | 21.6       | 10.2       |  |  |  |  |
| Lu                                      | 0.8        | 0.7      | 0.8        | 0.5        |  |  |  |  |
| Mn                                      | 3950       | 1060     | 2730       | 1520       |  |  |  |  |
| Мо                                      | <5         | 13       | 6          | <5         |  |  |  |  |
| Nb                                      | 5          | 20       | 12         | 9          |  |  |  |  |
| Nd                                      | 28         | 43       | 33         | 21         |  |  |  |  |
| Ni                                      | 24         | 53       | 30         | 30         |  |  |  |  |
| Pb                                      | 35         | 66       | 40         | 16         |  |  |  |  |
| Rb                                      | 30         | 104      | 68         | 39         |  |  |  |  |
| S (%)                                   | 0.18       | 0.06     | 0.14       | 0.09       |  |  |  |  |
| Sb                                      | 3.3        | 4.8      | 4          | 7.3        |  |  |  |  |
| Sc                                      | 14         | 16       | 13         | 14         |  |  |  |  |
| Sm                                      | 6          | 8        | 7          | 5          |  |  |  |  |
| Sn                                      | 4          | 5        | 4          | 2          |  |  |  |  |
| Sr                                      | 170        | 400      | 230        | 350        |  |  |  |  |
| Та                                      | 0.4<br>1.2 | 1.6      | 0.9<br>1.1 | 0.6<br>0.8 |  |  |  |  |
| Tb                                      |            | 1.3      |            |            |  |  |  |  |
| Th<br>Ti                                | 3.7        | 17.2     | 8.5        | 4.3        |  |  |  |  |
| Ti                                      | 4600       | 4870     | 4400       | 4530       |  |  |  |  |
| UV                                      | 8          | 18.6     | 10.5       | 3          |  |  |  |  |
|                                         | 98         | 101<br>7 | 134        | 106        |  |  |  |  |
| W                                       | <4         |          | <4         | <4         |  |  |  |  |
| Y                                       | 42         | 37       | 36         | 24         |  |  |  |  |
| Yb                                      | 4          | 3.7      | 3.4        | 2.6        |  |  |  |  |
| Zn                                      | 178        | 246      | 204        | 107        |  |  |  |  |
| Zr                                      | 218        | 185      | 196        | 190        |  |  |  |  |

### Stream Sediments STSD-1 to STSD-4 Provisional Values for "Total" Elements µg/g (except where noted)