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ABSTRACT

The uncertainty in long-term photovoltaic (PV) system yield predictions was examined
by statistical modeling of a hypothetical 10 MW AC photovoltaic system in Toronto,
Canada. The goal of this research was to develop a methodology for estimating the
uncertainty in PV yield predictions and to identify avenues for reducing this uncertainty.
In this case study, uncertainties were estimated to be about 3.9% for year-to-year climate
variability, 5% for long-term average horizontal insolation, 3% for estimation of radiation
in the plane of the array, 3% for power rating of modules, 2% for losses due to dirt and
soiling, 1.5% for losses due to snow and 5% for other sources of error. Uncertainties due
to ageing and system availability were also considered. By performing statistical
simulations with the Solar Advisor Model software, it was found that the combined
uncertainty (standard deviation) is approximately 8.7% for the first year of operation, and
7.9% for the average yield over the PV system lifetime. While these numbers could vary
significantly from one system to the next, the methodology developed is widely
applicable. Moreover, a simpler methodology was also explored which should yield
quick and fairly reliable estimates of uncertainty. Finally, avenues for reducing yield
uncertainties were identified, including: increasing the reliability and resolution of solar
radiation estimates, including measurements of irradiance in non-horizontal planes at
high quality ground stations, reducing the uncertainty in module ratings and investigating
losses that have not been well documented such as those due to dirt, soiling and snow.

1. INTRODUCTION

In 2006, the Province of Ontario (Canada) introduced subsidies for photovoltaics (PV)
and other renewables via the Renewable Energy Standard Offer Program (RESOP). This
was followed in 2009 by a Feed-In Tariff (FIT) program which lead to a quick uptake
both for residential and commercial systems and for Megawatt-scale PV parks ([1], [2]).
As the number and scale of PV systems installed grows, so does the size of the associated
investments, and the related opportunities and risks. It therefore becomes increasingly
important for developers, investors and financing institutions to identify and minimize
uncertainties that could affect the viability of their projects.

The uncertainty in PV system yield will be the focus of this article. Other uncertainties
that can affect the cost and viability of a project include the eventuality of change in
government policy, issues related to grid connection, uncertainties in capital and
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construction costs, and the possibility of delays, to name a few. These uncertainties are
discussed extensively in [3].

This article is structured as follows: Section 2 discusses the individual variables that
contribute to PV yield uncertainty; Section 3 describes how the individual uncertainties
from Section 2 were combined in a set of statistical simulations used to evaluate the
global uncertainty in predicted yield for a typical PV park; Section 4 provides results and
discussion, and Section 5 some concluding comments.

2. INDIVIDUAL VARIABLES CONTRIBUTING TO PV YIELD UNCERTAINTY

Modeling the uncertainty in long-term PV system yield requires information about the
possible range or distribution of each of the variables involved in the model. These are
discussed below, and form the basis of the statistical simulations in Section 3.

Note that in this study, only crystalline silicon PV modules were considered. The
problems inherent to other technologies (e.g. amorphous silicon) were not covered,
although the study could be extended to them. Note also that the term “uncertainty” in
this paper will be used to designate root mean squared error (RMSE), unless otherwise
specified.

2.1 Uncertainties in the solar resource
2.1.1. Long-term average insolation

There are a number of different sources of solar radiation data in Canada, including
measured values, values estimated from terrestrial models, interpolated values, and
values estimated from satellite-derived models (see [3] for a review). We will restrict our
attention here to the Canadian Weather Energy and Engineering Data Sets (CWEEDS)
produced by Environment Canada, and on typical meteorological year files derived from
CWEEDS (these are known as Canadian Weather for Energy Calculations (CWEC)
files).

The latest version of CWEEDS, produced in 2006, contains hourly data from the years
1953-2005 (at most) for 235 sites. The data include solar radiation, dry bulb temperature,
wind speed, etc., and are freely available online at [4]. For about 40 sites, the radiation
data is based on measurements from Environment Canada ground stations. For the
remaining sites, radiation is generated synthetically using a model which relies on earth-
sun geometry, cloud cover information (cloud amount and type by layer), and other
parameters. The mean bias error (MBE) of the model is estimated at 5% or less and the
RMSE is estimated at about 30% on an hourly basis, 16% on a daily basis, and 7% on a
monthly basis [5]. As for the measured data, Myers et al. [6] evaluate the uncertainty of
broadband irradiance measurements at about 3 to 5%".

! Myers et al. define uncertainty as the range associated with a 95% confidence interval.



2.1.2 Yearly and 20-year solar insolation variability

In an analysis of satellite-derived radiation data in the Mediterranean and Black Sea
regions, Suri et al. [7] have shown that yearly global horizontal insolation displayed low
inter-annual variability, typically in the range 4 to 6%. This variability was found to be
lowest in arid regions and highest (up to 10%) in coastal and mountainous regions.
Similarly, standard deviations of yearly insolation for 13 Canadian sites based on
CWEEDS data was found to range from 2.5% to 5.0% [3].

Solar radiation is also subject to decadal cycles and other long-term trends, however these
seem very small compared to the other uncertainties discussed here. For instance, the
standard deviation of CWEEDS solar radiation data averaged over 20 consecutive years
for Toronto is only 0.44%; this uncertainty was therefore neglected in our analysis.

2.1.3 Uncertainties introduced by the use of transposition models

Transposition models calculate solar radiation in the plane of the PV array, given solar
radiation on the horizontal surface. The hourly or sub-hourly models require a breakdown
of solar radiation into diffuse and beam components, which is often done with a model as
well.

A study by Gueymard [8] using one-minute measurements from Golden, CO, showed
that when only global irradiance is known — i.e. the diffuse and beam components are
modelled and the albedo is estimated — the MBE tends to be in the range of 0 to -6% for a
South-facing surface with latitude tilt, and the RMSE in excess of 10%. Gueymard
showed that there is in general no best model to use and that the results will vary
according to the combination of models used, the characteristics of solar radiation at the
site, ground albedo, etc., so it is difficult to eliminate or even reduce the error.

2.2 Uncertainties in PV system performance
2.2.1. Module rating

It is frequent for the measured power of a PV module to differ markedly from its
nameplate power, with modules typically performing below rather than above their rated
power at standard testing conditions (STC). For instance, module tests in the United
States ([9], [10]) and Australia [11] revealed differences between measured and rated
module STC power in the range of +4.9% to -19.7%, with average differences of about
-3% to -5%.

The lack of strict requirements in current PV module standards may partly explain this
situation: The current (2™!) edition of the IEC 61215 standard — which specifies the
requirements for the design qualification and type approval of terrestrial crystalline PV
modules — lacks a pass/fail criterion that would ensure that the modules meet the
nameplate rating given by the manufacturer. As long as the degradation of the measured
maximum output power does not exceed a prescribed limit after each test (usually 5%),
and the modules meets a number of additional criteria described in the standard, the
module design is deemed to have passed the qualification tests. This loophole will be
fixed in the next edition of IEC 61215 under development by requiring that modules meet



a minimum rating value specified by the manufacturer. Meanwhile, the UL 1703 PV
module safety standard, and the equivalent ULc 1703 document recognized in Canada,
require that, under standard test conditions (STC), the power output of the modules tested
be at least 90% of their nameplate rating. This criterion has however been criticized as
being too permissive.

Note also that there is currently a shift among some PV module manufacturers to move
towards positive tolerances for the power rating of their products, such as [0%, +5%]
instead of +3%.

2.2.2 Degradation of PV modules

Degradation of PV modules is actually a combination of two phenomena:
1. Aninitial, very rapid decrease in efficiency within the first few days of exposure.
2. A long-term, gradual decrease in efficiency over the years.

Initial degradation

In a field test of 66 crystalline silicon modules, Dunlop et al. [12] observed initial
degradation of 2.6% + 1.3%. Since this degradation occurs only after the first few days of
module exposure to natural light, it is not accounted for by indoor tests of module STC
power and it is currently up to manufacturers whether or not to include it in their module
tolerance ratings.

Long-term degradation or ageing

In a field test of 204 crystalline silicon PV modules, Skoczek et al. [13] found that 70%
of modules had an annual maximum power degradation rate lower than 0.75%, with only
35 out of 204 modules tested losing more than 20% of their rated power after 25 years.
Ageing was fairly consistent among modules of the same type (i.e. manufacturer /
construction). Based on this study and others [3] it seems reasonable to assume that
module degradation will typically be in the range of 0.3 to 0.8% per year.

2.2.3 Availability

Annual availability was around 95% for 116 systems in Germany, Italy and Switzerland
[14]. For recent installations, over 90% of systems had availability greater than 90% and
about 55% had availability greater than 99% [14]. For a 3.51 MWp plant, Moore and Post
[15] report overall system effective availability of more than 99.4% over a five year
period.

2.2.4 Presence of snow

Snow was reported as a factor for high losses in winter in an analysis of 500 systems in
Japan [16], but these still accounted for less than 2.2 % overall on a yearly basis. Another
Japanese study by Sugiura et al. [17] looking at 25 sites estimated annual losses due to
snow at less than 0.7% in northern Honshu (near latitude 44°N) but as high as 3.5% in
Hokkaido (a few degrees further North). Meanwhile, a study of a 1 MWp system in



Munich, Germany estimated annual losses due to snow at 0.3-2.7 % [18]. Another study
of two systems in Austria found losses of 1% for one system and 3.3% for another, at
1550 m elevation [19].

There are numerous parameters at play: type of snow (light, heavy), age of snow,
radiation, temperature, tilt angle of the modules, type of mounting system, distance of
modules to the ground. The complex interactions of these phenomena make it difficult to
generalize the findings of the above studies, and render a more precise calculation of
snow effects difficult.

2.2.5 Dirt and soiling

Like the effects of snow, those of dirt and soiling depend on the site and climate, and are
difficult to model or extrapolate from case studies. As described by the IEA PVPS Task 7
[20], module soiling can result from various mechanisms: pollution, the accumulation of
dust or pollen, bird droppings or the growth of lichen (particularly at the lower edge of
framed modules). They note that bird droppings represent a serious problem as, contrary
to dust, they tend not to be washed away by rainfall. They mention that the average
impact on yearly energy production for the systems in Germany’s “1000-roofs-
Programme” was typically less than 2%, but reached up to 2 to 6% for modules with a tilt
of 30° or less and high horizontal frame or cover profiles. In the worst case a string
delivered 18% more power after cleaning.

By studying PV systems in the South-Western USA, Kimber et al. [21] showed that
soiling involves a complex interaction of dust and rain. There is a marked decrease in
module efficiency during the dry season. Similarly, systems located in deserts are very
susceptible to dust build-up, with performance loss ranging from 0.1 to 0.3% per day.
Meanwhile, systems receiving frequent rainfall (at least once a month) do not experience
significant losses. The average annual loss according to the model developed by these
authors ranges from 1.5 to 6.2%. Kimber [22] confirmed that figure in a controlled
experiment of three systems in Los Angeles, CA (one washed, the other two not) with
annual losses of 3.5% and 5.1%.

Hammond et al. [23] note that the effect of soiling increases with the angle of incidence,
from 2.3% under normal incidence to 7.7% when the angle of incidence reaches 56°.

2.2.6 Shading

Some row-to-row shading cannot be avoided in multiple row systems. This shading can
be minimized by leaving more space between rows, and using a lower PV array tilt. The
effect of shading is best estimated for the location under consideration with the help of a
simulation program. Very little or no uncertainty is attached to this as the occurrence of
shading can be precisely modelled, so one can design systems to be shade-free most of
the time. Nevertheless, array performance under partial shading conditions is still
difficult to evaluate.



2.2.7 Other PV system losses

Other losses worth mentioning include thermal losses, spectral losses, losses due to
reduced performance at low irradiance, losses due to reflection on the front surface of the
modules, wiring and mismatch losses and losses due to DC to AC conversion by the
inverter. On a yearly basis, thermal losses are around 2 to 10%, losses due to reflection
are around 0 to 5% and spectral effects are usually in the range of +1 to -3% [24]. These
losses are either small and/or can be well modelled by simulation programs (ex: thermal,
angle of incidence and inverter losses), so that their individual contribution to the
uncertainty in annual yield estimates is modest. The overall uncertainty in these “other
losses” is estimated to be of the order of 3 to 5%.

2.2.8 Post-inverter losses

There are two main types of loss that can arise between the inverter and the connection
point to the public grid (PCC) where electricity generation is metered: wiring losses and
transformer losses. Wiring losses are regulated in Canada by Rule 8-102 of the CE Code
[25], which mandates a maximum of 3% voltage drop at nominal power for the branch
circuit and a maximum of 5% total voltage drop between the PCC and the point of
utilization (inverter).

The main variables affecting voltage drop in a given system are the selection of the
nominal resistance of the wires and temperature fluctuations. Knowing the wire size and
length, detailed simulations can account for the dependence of wiring losses on the
inverter output power. However, accurately accounting for conductors’ temperature
variation is definitely more demanding and is beyond the capabilities of PV simulation
tools; this introduces uncertainty into wiring loss estimates. In what could be considered a
worst case scenario of -20 to 90°C temperature span, assuming a 5% maximum voltage
drop design, losses would vary between ~2 and 3.5%. On the other hand with a more
realistic 1% maximum voltage drop design, losses would only be in the range of ~0.5 to
0.75%.

Transformer losses are divided into two parts: no-load (core) losses and ohmic (winding)
losses. No-load losses are constant, and depend primarily on the magnetic material and
geometry of the core. Meanwhile, ohmic losses are proportional to the loading of the
transformer and depend on the material and size of the wires used in the transformer
windings. Nominal losses (no-load and ohmic) can be estimated based on manufacturer
specifications. However, these are subject to some uncertainty due to variability between
transformers of the same type [26].As a rough estimate, for a 1 MVA unit and production
typical of a IMW PV system in Ontario, an amorphous metal based transformer will
generally have total losses of around 0.85-1%, a good silicon steel based transformer
around 1.5-2% and a standard transformer around 2-3%.

To summarize, for given wiring and transformer specifications and design, uncertainties
in post-inverter losses are relatively modest (of the order of 1% or less).



2.3 Modeling uncertainty

In addition to the uncertainties mentioned in sections 2.1 and 2.2, modeling of the system
itself with simulation tools is a source of uncertainty. The accuracy of a given PV system
model is difficult to estimate, since it is difficult to distinguish between modeling errors
and errors in the model inputs. Estimates of this uncertainty therefore vary widely, but
typically range from 3 to 5% if the modules are well characterized. For example,
validations of the PVSYST model against data from seven well-characterized systems
yielded mean bias errors with magnitudes ranging from 0.7% to 12.8% [27].

3. STATISTICAL SIMULATIONS OF LONG-TERM PV YIELD

Statistical simulations were used to combine the uncertainties described in the previous
sections into a global uncertainty in photovoltaic yield predictions. This was implemented
by using the parametric and statistical analysis options of the Solar Advisor Model
(SAM) software [28]. SAM’s statistical modeling uses a variant of the Monte Carlo
method called the Latin Hypercube Sampling or LHS method. The method was
illustrated for a solar farm located in Ontario, Canada. Starting from a base case, we
studied first the uncertainties associated with the first year of operation and then the
uncertainty associated with the performance of the system over a 20 year lifetime, with
ageing and system availability taken into account.

3.1 Base case

The base case is a 10 MW AC solar farm located near Toronto, ON. The system
comprises 20 SMA SC500U inverters rated at 506 kWac, and 60,160 BP Solar SX 3200N
modules rated at 200 Wp; each inverter is connected to 188 strings of modules in parallel,
each string having 16 modules in series. For the purpose of simulation only 1/20"™ of the
system (i.e. one inverter) was considered. As SAM does not allow detailed modelling of
post-inverter components (transformers, wiring, etc.), these were excluded from the
current analysis, and the post-inverter derating set to one. Simulation parameters for this
subsystem are summarized in Table 1. The pre-inverter derate factor in Table 1 was
chosen in part to yield a realistic performance ratio for a large-scale PV park of the order
of 0.8, as reported for instance by Moore and Post [15] for a 3.51 MW, system in Arizona
(see also section 3.2.6 on how the various deratings add up to the value listed in Table 1).



Table 1 - Default system parameters.

Parameter Value

Inverter SMA SC 500U
Inverter size (kWac) 506.7

PV Modules BP Solar SX 3200N
Modules per string 16

Strings in parallel 188

Array peak power (kWp) 601.4

Tilt 35°

Azimuth Due South

Pre-inverter derate factor 0.85
Post-inverter derate factor 1

Ground reflectance 0.1 (no snow)
0.15 (with snow)

Climate file Toronto  Airport (WBAN
04714) CWEC file

3.2 Modeling uncertainties with the Solar Advisor Model

3.2.1 Uncertainty in solar radiation

While an hourly simulation was performed to estimate annual PV system yield as
accurately as possible, annual yield is to a good approximation primarily influenced by
the yearly total insolation in the plane of the array, and relatively insensitive to the
underlying hourly distribution. Thus, solar radiation uncertainty was represented by the
uncertainty in the yearly total insolation. Although mostly measured data was used in this
analysis, an uncertainty of 5% was modelled as representative of a sub-optimal case
where data must be either interpolated from other stations or derived from satellite
observations. The uncertainty was assumed to follow a normal distribution.

SAM does not allow the user to stochastically modify solar radiation read from the
climate files. The uncertainty associated with solar radiation therefore had to be
introduced by varying the input files manually. The procedure starts by dividing the
standard normal cumulative distribution function (mean of zero, standard deviation of 1)
into five regions of equal probability, and taking the central point of each region as the
representative sample for which simulations were run (this is somewhat akin to stratified
sampling; see [29]). This is illustrated in Figure 1. Then, the climate file used in the
simulation was modified to generate five files corresponding to these five points on the
cumulative distribution function (CDF), by multiplying all irradiance values in the
climate file by a constant factor according to the point considered on the CDF. For
example, the fourth point on the curve corresponds to a CDF of 0.7 and is equal to
0.5244; given the 5% uncertainty considered, the multiplicative factor in this case was
1 +0.5244 x 0.05 = 1.0262.

This method of accounting for uncertainty in solar radiation is somewhat simplistic, in
particular because it can potentially lead to unrealistically high values of solar irradiance.
However it can receive a simple physical interpretation. For example, the multiplicative



factor applied to all radiation values can be viewed as an improper calibration of the
pyranometers measuring solar radiation. It also has the merit of being easy to combine
with straightforward Monte-Carlo simulations to study uncertainties associated with other
parameters.
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Figure 1 - Points chosen on normal CDF

3.2.2 Transposition model and dirt

As in the case of global horizontal radiation (3.2.1), the transposition model contributes
uncertainty to the simulation primarily through its long-term bias. Following the
discussion in Section 2.1.3, the uncertainty associated with the transposition model was
therefore simply represented by a normal distribution with a mean of -2% and a standard
deviation of 3% (-2%, 3%). As for dirt, it is believed that rain will wash the arrays often
enough that the derating should be lower than in California; however some sites may be
more susceptible to dirt because of the proximity to busy roads, agricultural operations or
heavy industries. This was reflected by using a fairly significant standard deviation (2%)
on top of an average loss of 3%. The uncertainty associated with dirt was therefore
represented by a normal distribution (-3%, 2%).

These two uncertainties affect the amount of solar radiation available in the plane of the
array, before it reaches the solar cells. SAM does not allow the user to explicitly apply
stochastic variations to this quantity. However, the program can be tricked into doing so
by modifying two of the parameters of the PV module performance model, namely the
reference irradiance and the NOCT irradiance (by modifying the latter, one simulates the
effect of a lower or higher reference irradiance on cell temperature). The two
uncertainties for transposition and dirt were combined into a single normal distribution;
the average of the distribution is the sum of the averages of each individual distribution
(i.e. -2%-3%=-5%), whereas its standard deviation is the square root of the sum of the
squares of the standard deviations for each distribution [30], (i.e. [3%*+2%%]"% = 3.61%).



3.2.3 Power rating of modules

Uncertainty in the power rating of the modules was modeled as a normal distribution
(-3%, 3%). The 3% standard deviation used here is typical of the tolerance usually given
by module manufacturers. It assumes that the modules will indeed perform according to
their rating, which is the case for most modules from reputable manufacturers (large PV
developers may also be able to enforce this to some extent). The -3% bias is typical of
light-induced degradation of PV modules in the first few days of operation.

3.2.4 Albedo

The albedo was represented by a uniform distribution between 0.1 and 0.15. This range is
simply an educated guess; it accounts for the fact that rows beyond the second one
receive little reflected solar radiation, so albedo should be lower than the often-used value
of 0.2. In SAM, uncertainty can be applied directly to the albedo. Note that albedo in the
presence of snow was varied in the same proportion; a correlation between the two
uncertainties was set up with SAM.

3.2.5 Snow, modeling errors and other

As indicated earlier, the presence of snow seems to have a limited impact on energy
production. The resulting uncertainty was modeled as a normal distribution with a
standard deviation of 1.5% around an average of -2%, which seems representative of the
values found in the literature. Modeling errors and the remaining PV losses (including
post-inverter losses and losses discussed in 2.2.7) were represented by a normal
distribution (-5%, 5%). The -5% bias represents modeling errors such as mismatch losses
and wiring losses [31], while the 5% standard deviation is typical of the uncertainty
associated with modeling, as discussed earlier.

These two errors were combined and were applied as a post-inverter derating. This is
probably the most appropriate way to take them into account, since they represent global
errors that cannot be attached to any particular sub-model in the program (snow is very
seasonal, and is therefore not treated in the same way as dirt, although the mechanisms
are somewhat similar). The resulting error is a normal distribution; the mean and standard
deviation were combined as indicated earlier (-2%-5% = -7%, [1.5%+5%"]"* = 5.22%).

Finally, the uncertainties due to ageing and failures/outages were treated separately, as
discussed in Section 3.4.

3.2.6 Number of realizations required

SAM was run in statistical mode with the various distributions described above. It should
be noted that the means of the distributions were ignored in SAM, i.e. all distributions
were centered around zero. The reason is that the base case already includes a pre-
inverter derating of 15%, which is equal to the sum of the biases from the various
distributions. Not centering the distributions around zero would be equivalent to counting
the biases twice.

-10 -



The number of realizations necessary to represent properly the uncertainty of the yield is
not easy to determine. The Appendix shows that the average yield determined from
statistical simulations is estimated with a confidence inversely proportional to the square
root of the number of realizations, and that the standard deviation of the yield seems to
follow the same pattern. The Appendix indicates that using 100 realizations provides a
reasonable confidence in the results while keeping the run-time short (less than 10
minutes). These 100 realizations have to be run for each climate file considered.

3.3 Modeling uncertainty in year one yield

The first set of statistical simulations aimed at modeling the uncertainty in the first year
of operation. For this, one has to combine the uncertainties due to system parameters and
modeling (modeled with SAM as described above and summarized in Table 2) with that
due to yearly climate variability.

When only long-term system performance is of interest, it is customary to run simulations
using a so-called 'typical meteorological year', which is created from a long-term climate
record (30 years in this case) by concatenating months selected from individual years.
The months are selected based on statistical criteria, to be representative of long-term
conditions in terms of solar radiation and average temperature.

On the contrary, when the year-to-year variability of solar radiation is of interest, it is
best to run simulations for individual years from the 30-year time span. This however
leads to a very large number of simulations. To speed things up, a CDF of yearly yields
for the 30-year period was calculated (see Figure 2), and 10 years were chosen using a
stratified sampling procedure to statistically represent the whole range of yearly solar
conditions and yields expected at the site. The years selected by this procedure were
1972, 1970, 1984, 1982, 1985, 1979, 1975, 1974, 1960 and 1978. The procedure to
account for uncertainty in solar radiation, explained previously, was applied to each
individual year. The total number of realizations was therefore 5,000 (10 individual years
x 5 modifications to account for uncertainty in solar radiation x 100 realizations).

Table 2 - Types of uncertainties modeled.

Variable Uncertainty distribution
Solar radiation, long-term average Normal (0%, 5%)

Solar radiation, yearly variability Normal (0%, 3.9%)
Transposition model Normal (-2%, 3%)
Power rating of modules Normal (-3%, 3%)

Dirt and soiling Normal (-3%, 2%)
Snow Normal (-2%, 1.5%)
Albedo Uniform (0.1, 0.15)
Other (modeling errors, spectral effects, | Normal (-5%, 5%)

etc.)

-11 -
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Figure 2 - CDF of yield depending on year used for simulation, for the base case.

3.4 Modeling uncertainty in lifetime average yield

The second set of statistical simulations aimed at determining the uncertainty attached to
the 20-year, or lifetime average yield. For the purpose of illustration, ageing was modeled
as a uniform distribution [-0.3, -0.8] %/year, and availability was modeled as a uniform
distribution [0.985, 0.995].

Other uncertainties were modeled statistically as before, however fluctuations of the solar
resource from one 20-year period to the next could be ignored as discussed in Section
2.1.2. Therefore, the statistical simulations were run only for the 'typical year', and the
uncertainties related to ageing and availability were modeled by superimposing the
distributions for ageing and availability to the results of the statistical simulations.

-12 -



4. RESULTS AND DISCUSSION
4.1 Base case

For a typical year, with nominal parameters as per Table 1, SAM predicts an annual
energy output of 717.6 MWh, i.e. a yield of 1,193 KWh/KWp and a system performance
ratio of 0.80.

4.2 Uncertainty in year one vield

When yearly climate variability and all uncertainties are taken into account, annual yield
assumes a statistical distribution represented by the CDF shown in Figure 3. The mean
yield over all realizations is 1,200 KWh/KWp, very close to the yield predicted for the
base case; the standard deviation is 105 KWh/KW0p or 8.7% of the mean.

This figure can also be used to determine confidence levels or energy exceedance
probabilities. For example, there is roughly an 80% chance that the yield of the system,
for the first year, will be between 1,068 and 1,337 kWh/kWp. Similarly, the P90 level is
1,068 kWh/kwp, that is, there is only a 10% chance that the first-year yield would fall
under that threshold.
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Figure 3 - CDF for year one yield considering all uncertainties and climate variability.
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4.3 Uncertainty in lifetime average yield

When the long-term performance of the system is considered, including ageing and
unavailability, annual yield assumes a statistical distribution represented by the CDF
shown in Figure 4. The quantity plotted is the yield averaged over the expected lifetime
of the system (20 years). Lifetime average annual yield is 1,119 kWh/kWp, with a
standard deviation of 89 kWh/kWp or 7.9% of the mean. It is worth noting that because
of ageing, the average yield is significantly lower than the year 1 yield. On the other
hand, the standard deviation is smaller than that of year one despite the added uncertainty
associated with ageing, because of the reduced uncertainty in the solar resource when
comparing a 20-year period to a single year.
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Figure 4 - CDF for lifetime average annual yield.

4.4 Discussion: Comparison with a simpler method

Since the statistical simulation approach used in this study is fairly involved, it is worth
investigating whether a simpler approach to combining uncertainties could be used to
yield a quick estimate of the overall uncertainty.

With the exception of the transposition model, PV output can be represented to a good
approximation as the product of linear factors (output = input x proportionality factor -
offset, with the offset relatively small compared to the phenomenon itself). It is well
known [30] that if a quantity X is the product of N independent variables X,, X,, ...,
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Xp,asin X =a- X, - X,-...- Xy with & aconstant and with uncertainties &, ¢,, ...,
&\ > then the combined uncertainty ¢, in X can be calculated according to the 'rule of
squares':

&t 512 522 ‘9!%1
— = —2+—2+...+—2
X X7 X5 Xy

The main uncertainties associated with year one uncertainty, for example, are:

3.9% for climate variability

5% for solar radiation

3% for transposition model

3% for power rating of modules
2% for dirt and soiling

1.5% for snow

5% for other errors

Using the rule of squares the combined uncertainty is:

V392452432 432422 41,52 +52 =9.45%

which is close to the estimate (8.7%) obtained with statistical simulations,
notwithstanding the fact that not all the uncertainties were normally distributed. This
indicates that, should different numbers be used for the various uncertainties mentioned
in this report, the ‘rule of squares’ can be used in lieu of full statistical simulations to
obtain a quick estimate of the global uncertainty attached to the yield of the system.

The ‘rule of squares’ is also useful for understanding the relative importance of various
uncertainties in the global uncertainty. For example, climate variability and uncertainties
in solar radiation combined account for almost half the term under the square root. On the
other hand, the uncertainty introduced by snow and dirt accounts for less than 7% of the
same term.

5. CONCLUSION

Statistical simulations were used to estimate the uncertainty of the annual yield of a
typical large PV park in Ontario. It was found that the combined uncertainty (in terms of
standard deviation) is of the order of 8.7% for individual years, and of 7.9% for the
average yield over a 20 year system lifetime. The numbers above are thought to be
representative of good-quality installations in Ontario, and could vary significantly from
location to location or from system to system. However, the methodology that was used
should be widely applicable once the values of the relevant uncertainty distributions have
been assessed for a given case. Moreover, as highlighted in Section 4.4, a less
sophisticated approach based on simply combining uncertainties seems to yield a good
estimate of overall uncertainty and could be used to obtain quick estimates.

Uncertainties could be further reduced by exploring the following avenues:
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> Solar resource: current estimates from various sources vary sometimes widely.
Effects of micro-climates are not well known. Reliable data sources are often
interpolated over large distances, or supplemented by satellite-derived data which still
suffer from serious shortcomings [3]. More work is needed to increase the reliability
and spatial coverage of solar radiation estimates.

> Transposition models: As pointed out by Gueymard [8], it is difficult to know which
combination of models and parameter estimates will yield the best value for
irradiance in the plane of the array, since this depends both on the available data
(global horizontal irradiance only, or diffuse and beam as well) and on the location. In
order to support the development and testing of such models for Canada, it would be
useful if a few high quality ground stations in the country could include
measurements in a non-horizontal plane as part of their dataset.

> Module rating: there is still some confusion as to the tolerance on the initial power of
modules. More clarity is needed to put all manufacturers on a level playing field and
to reduce the uncertainty faced by developers. This clarity could be provided for
instance by tightened requirements in PV module standards, such as the planned
improvement to the IEC 61215 standard discussed in Section 2.2.1. In particular,
these standards should deal explicitly with the issue of initial degradation of
crystalline PV modules following the first few days of exposure.

> Some of the losses experienced by systems are poorly understood and difficult to
estimate. This concerns in particular losses due to dirt and soiling, and losses due to
snow. Current numbers are extrapolated from other jurisdictions, but their effects
need to be actually measured across the variety of climates experienced in Canada.
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APPENDIX

The shape of the CDF curves generated in a statistical simulation, and the resulting
average and standard deviation, depend somewhat on the number of realizations used.
Intuitively one can understand that if too few realizations are used, then they will not
statistically cover the whole range of possibilities for the various distributions considered.
On the other hand the use of an extremely large number of realizations will give a better
representation of the statistics of the problem, but at the expense of run time.

The variation of statistics as a function of the number of realizations was studied in the
case of the statistical SAM runs used in this report (however to save time the uncertainty
attached to solar radiation was not considered). The study is based on the use of batches,
as explained in [25] (p. 237).

When N realizations are used, a CDF of the yield can be plotted and the statistics of the
yield distribution can be calculated. Let us call Y, and oy the mean and standard

deviation of the yield thus calculated with N realizations. If a different set of N
realizations is run, the calculation of Y, and oy n Will lead to slightly different results,
because the parameters used for the runs will be different. If one runs enough sets of N
realizations, one obtains statistical distributions of Y, and Oy N -

The distributions themselves depend on the number N of realizations (intuitively, if N

is larger the distributions will be narrower). To characterize these distributions, a
simulation with 6,000 realizations was run. Then the results were divided into batches of
N = 10, 20, 50, 100, and 200 realizations; for example there are 600 batches of 10
realizations, 300 batches of 20 realizations, etc., and 30 batches of 200 realizations. For

each set of batches corresponding to a value of N, the standard deviation of Yy and of
oy n can be calculated, and the results plotted against N in a log-log graph as shown in
Figure 5Error! Reference source not found..
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Figure 5 - Standard deviation of Y, and oy y asafunction
of the number of realizations N .

The figure indicates that the standard deviation of Yy, is inversely proportional to N 2,
This does not come as a great surprise as the uncertainty on the mean of a sample of p
values varies as 1/ \/6 . As for the standard deviation of oy \, its behaviour is slightly

less obvious but it seems to be also inversely proportional to N/ .

With N = 100 as chosen for the study, the estimated standard deviation of Y, is
6.8 kWh/kWp; and that of oy  is 6.3 kWh/kWp. Those numbers are small compared to

the average value of the yield (~1200 kWh/kWp) and to its typical standard deviation
(~93 kWh/kWp), so the number of realizations seems adequate.
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