10 COMPANIES THAT ARE MAKING A DIFFERENCE
CIPEC LEADERSHIP AWARDS
Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified.

You are asked to:
- exercise due diligence in ensuring the accuracy of the materials reproduced;
- indicate the complete title of the materials reproduced, the author organization; and
- indicate that the reproduction is a copy of an official work that is published by the Government of Canada and that the reproduction has not been produced in affiliation with, or with the endorsement of, the Government of Canada.

Commercial reproduction and distribution is prohibited except with written permission from the Government of Canada’s copyright administrator, Public Works and Government Services Canada (PWGSC). For more information, contact PWGSC at: 613-996-6886 or at: copyright.droitdauteur@pwgsc-tpsgc.gc.ca.
CONTENTS

- **CONTENTS** .. 1
- **ABOUT CIPEC** .. 2
- **MESSAGE FROM THE CHAIR** 4
- **CIPEC LEADERSHIP AWARDS** 6
 - Broan-NuTone Canada Inc. 8
 - Mondelez canada Inc. (Cadbury) 10
 - ArcelorMittal Dofasco Inc. 12
 - Kruger Products L.P.. 14
 - Flakeboard Company Ltd. 16
 - Groupe Savoie Inc... 18
 - Irving Paper Limited...................................... 20
 - S.A. Armstrong Limited 22
 - Cascades Energy Action Group 24
 - IBM Canada.. 26
 - Nathaniel Gosman.. 28
 - Hossein Safaei.. 29
- **ENERGY EFFICIENCY PROGRAMS AND TOOLS FOR INDUSTRY** 30
- **THE YEAR IN REVIEW** 33
- **INDUSTRY SECTOR PROFILES** 34
 - Energy Management that Works 35
 - Aluminum.. 36
 - Brewery... 38
 - Cement.. 40
 - Chemicals.. 42
 - Construction... 44
 - Dairy.. 46
 - Electrical and Electronics.................................. 48
 - Electricity Generation...................................... 50
 - Fertilizer.. 52
 - Food and Beverage... 54
 - Foundry.. 56
 - General Manufacturing..................................... 58
 - Lime.. 62
 - Mining.. 64
 - Oil Sands.. 66
 - Petroleum Products.. 68
 - Plastics.. 70
 - Pulp and paper ... 72
 - Steel... 74
 - Transportation Equipment Manufacturing 76
 - Upstream Oil and Gas...................................... 78
- **CIPEC WHO’S WHO** 80
- **CIPEC EXECUTIVE BOARD MEMBERS** 81
- **CIPEC TASK FORCE COUNCIL** 82
- **CIPEC LEADER COMPANIES BY SECTOR** 84
- **CIPEC TRADE ASSOCIATIONS** 93
- **CONTACTS – INDUSTRY AND TRANSPORTATION DIVISION** 94
ABOUT CIPEC

The Canadian Industry Program for Energy Conservation (CIPEC) is a voluntary industry-government partnership established to improve Canada’s industrial energy efficiency. CIPEC is funded under the ecoENERGY Efficiency for Industry initiative.

The 26-member CIPEC Task Force Council includes volunteer representatives from each of CIPEC’s 23 industrial sectors, which encompass more than 2400 facilities and over 50 trade associations. Each CIPEC Task Force represents companies engaged in similar industrial activities. The Task Force Council provides a forum for sectors to share ideas and recommend ways to address common needs and includes representatives from every CIPEC sector task force. Overall direction is provided by the CIPEC Executive Board, made up of private sector leaders who are champions of industrial energy efficiency and who provide advice on industrial energy efficiency programs and related issues to the Government of Canada.

In the CIPEC partnership, change emerges from consensus and joint action developed through open communication. CIPEC continues to be the focal point for industry’s response to Canada’s energy efficiency efforts.

CIPEC’s role is to promote greater energy efficiency and to recognize and reward trendsetters. At its biannual industrial energy efficiency conferences, CIPEC presents the CIPEC Leadership Awards to honour Canadian companies that have demonstrated a significant and innovative contribution to energy efficiency. Ten companies that are setting the pace in industrial energy efficiency were honoured at the CIPEC Leadership Awards on November 29, 2011. For the first time, the awards show also featured CIPEC Future Leaders Awards to recognize exceptional students. Close to 300 industry leaders attended the ceremony at the Energy 2011 conference.

Part of CIPEC’s mandate is a strong communications and awareness program anchored in its Heads Up CIPEC newsletter, which has a readership of more than 11,000 subscribers. CIPEC also raises awareness of the goals and benefits of improved energy use. The Task Force Council and sector task forces are constantly working toward broadening participation, encouraging information sharing and bolstering awareness of the role and achievements of CIPEC members.

CIPEC volunteers include successful business leaders and nationally recognized players. The profiles of these leaders and their strong belief in CIPEC’s principles attract new members from industry, building on the successful partnership between industry and government.
Our mission

To promote effective voluntary action that reduces industrial energy use per unit of production, thereby improving economic performance while participating in meeting Canada’s climate change objectives.

JOIN CIPEC

Participate in CIPEC by registering your company’s commitment to energy efficiency improvements and greenhouse gas reductions. Signing up as a CIPEC Leader is free and provides eligibility for a broad range of benefits:

- cost-shared assistance:
 - implementation pilots for the International Organisation for Standardization’s Energy Management Systems Standard (ISO 50001)
 - process integration (PI) studies
 - computational fluid dynamics (CFD) studies
- Natural Resources Canada’s Dollars to Sense Energy Management Workshops (including opportunities to have them delivered on-site and customized to meet specific company needs)
- free bimonthly webinars on innovative energy practices such as:
 - process integration
 - energy management information systems
 - ISO 50001 Energy Management Systems Standard
- eligibility to nominate your organization for a CIPEC Leadership award
- technical guidebooks
- Heads Up CIPEC — a monthly e-newsletter that provides the latest energy efficiency information
- opportunities to network with other industrial energy managers and practitioners

CONTACT CIPEC

cipec.gc.ca info.ind@nrcan-rncan.gc.ca
CIPEC members across Canada are making huge progress and have a lot of good ideas to be proud of. These ideas are using energy efficiency to build a lean and green future. In fact, many CIPEC Leaders are looking beyond energy efficiency to energy management, which is a way of looking at energy efficiency not just as a way to save costs but also as a way to promote business opportunities for industry.

I am also pleased that in January, the Honourable Joe Oliver, Minister of Natural Resources, announced additional funding to March 2016 for the ecoENERGY Efficiency Initiatives. These initiatives will benefit Canadians directly by improving energy efficiency in industrial practices and a variety of other areas. This investment demonstrates the Government of Canada’s continuing commitment to advance clean energy technologies and make Canada a world leader in energy efficiency. Improving energy efficiency saves energy, creates jobs and increases energy security.

In November, over 300 participants attended CIPEC’s Energy 2011 conference, which was jointly organized by CIPEC and Canadian Manufacturers and Exporters (CME).

This 2-day event featured workshops and panel sessions presented by industry leaders and energy experts. Participants learned about energy management, energy management information systems (EMIS), the ISO 50001 Energy Management Systems Standard and alternative energy solutions.

The conference also featured the Leadership Awards ceremony. Ten CIPEC Leaders were recognized for their commitment to improving industrial energy efficiency. The awards ceremony also featured the first CIPEC Future Leaders Awards honouring two students for their projects in energy efficiency. The event also featured poster sessions presented by the Leaders and Future Leaders awards winners.

This year, we built on the successful launch of the ISO 50001 Energy Management Systems Standard. ISO 50001 provides organizations with a structured energy management framework to help them increase energy efficiency, reduce costs and improve energy performance. It is a standard based on the common elements found in all of the ISO’s management systems standards, thus ensuring a high level of compatibility with ISO 9001 (quality management) and ISO 14001 (environmental management). It integrates energy efficiency into management practices by making better use of existing energy-consuming processes.

Two CIPEC Leaders, St. Marys Cement (Canada) Inc.’s plant in Bowmanville and 3M’s plant in Brockville, both in Ontario, were certified to the ISO 50001 standard this year. Several other CIPEC Leaders are working toward self-declaration, which means they are fully implementing ISO 50001. Their compliance with the standard will not be verified by a third party.

I am also proud that this year my fellow CIPEC Leaders recorded total annual energy savings of 0.6 petajoules — enough energy to power almost 7000 households. Estimated reductions in annual GHG emissions totalled 74 kilotonnes. One of the most significant things about these impressive numbers is the fact that they were achieved voluntarily — which is the foundation of CIPEC’s success.

The CIPEC Leaders who have driven Canada’s success on industrial energy efficiency all share this voluntary commitment. And the 15 new CIPEC Leaders we welcomed this year are now part of this proud volunteer tradition. Since 1975, CIPEC has grown to include more than 2400 CIPEC Leaders.

As I look forward to my sixth year as the Chair of the CIPEC Executive Board, I continue to be inspired by the extraordinary progress CIPEC continues to make and the remarkable voluntary partnership it remains. I wish to express my gratitude to CIPEC’s Executive Board and Task Force Council and the many volunteers on the sector task forces for their continuing dedication to improving industrial energy efficiency in Canada. I am convinced that their leadership and our collective efforts will ensure CIPEC has a promising future as we lead the drive toward sustainable growth in the wider Canadian economy.

Sincerely,

Glenn Mifflin
Vice-president and CFO, North Atlantic Refining Limited
Chair, CIPEC Executive Board
THE RESULTS

The Canadian Industry Program for Energy Conservation (CIPEC) brings exceptional value to Canadian industry while supporting Canada’s drive to improve energy efficiency and reduce greenhouse gas (GHG) emissions. Its extraordinary impact is clear — CIPEC delivers results.

The share of Canada’s gross domestic product (GDP) created by CIPEC industries increased 31 percent between 1990 and 2010. With the help of effective energy management, energy consumption by these industries rose only 20.2 percent.

In 2010, CIPEC industries produced approximately 25 percent of the country’s GDP and provided jobs for approximately 3.5 million Canadians.

The more than 5300 facilities that CIPEC sectors represent reduced their combined energy intensity by 8.2 percent between 1990 and 2010, an average of 0.5 percent per year.

Improved energy efficiency enabled Canadian industry to avoid approximately $6.1 billion in purchased energy in 2010 — enough energy to heat almost 8.4 million Canadian households for one year. Had energy intensity remained constant, GHG emissions from CIPEC industries would have been 34.2 megatonnes (Mt) higher.

From the fall of 1997 to March 31, 2012, the CIPEC Dollars to Sense Energy Management workshops helped companies save an estimated 10 petajoules of energy and cut carbon dioxide emissions by more than 1000 kilotonnes.

The Heads Up CIPEC newsletter was distributed electronically twice per month and reached over 11,000 recipients across Canada.

More than 2400 industrial facilities have signed on as CIPEC Leaders.

MINING, MANUFACTURING AND CONSTRUCTION ENERGY INTENSITY

The mining, manufacturing, and construction sectors improved their energy intensity by an average of 1.4 percent per year between 1990 and 2010. This rate surpasses the public voluntary commitment made by these CIPEC members to achieve an average annual energy intensity improvement of 1.0 percent per year.

TOTAL CIPEC ENERGY INTENSITY

Between 1990 and 2010, all CIPEC industries improved their combined energy intensity by 8.2 percent, or an average of 0.5 percent per year. If energy intensity had remained constant, GHG emissions would have been 34.2 Mt higher in 2010.
Every two years, innovative Canadian companies compete for the CIPEC Leadership Awards. The winners must demonstrate a significant and innovative contribution to energy efficiency. Only 10 winners are chosen.

Award winners are honoured at the CIPEC Leadership Awards ceremony — the signature event at the CIPEC biennial industrial energy efficiency conference. The Energy 2011 conference drew about 300 industry leaders to Toronto on November 24 and 25. The conference was co-hosted by CIPEC and Canadian Manufacturers and Exporters — a member of CIPEC and a leader in promoting energy-saving practices with industry.

To be eligible for the CIPEC Leadership Awards, all applicants had to register as CIPEC Leaders, and only projects begun after June 1, 2009 were eligible to qualify. The projects were evaluated by a panel of judges against five criteria:

1. **improved energy intensity** — reduced energy use per unit of production
2. **innovation** — creativity and ingenuity
3. **potential for broader use** — transferability to other companies or industry sectors
4. **contribution to the environment** — reduction in greenhouse gas emissions and improvement in environmental sustainability
5. **other benefits** — cost benefits, production, quality, maintenance, work environment, and improved competitiveness

FIVE AWARD CATEGORIES

Winning projects were as diverse as the products their companies produce, but they all had one thing in common — an outstanding commitment to improving industrial energy efficiency.

1. CORPORATE STEWARDSHIP

Winners in this category promoted energy efficiency at the corporate level by creating an energy management team or by developing a corporate energy management plan.

WINNERS

- **Broan–NuTone Canada Inc.,** Mississauga, Ontario
 Winning edge: an energy management team that encourages employees to think of energy efficiency as part of their day-to-day work.

- **Mondelez Canada Inc. – Gladstone Manufacturing Site (Cadbury),** Toronto, Ontario
 Winning edge: an energy management team that could show senior management the potential savings from energy efficiency.

2. PROCESS AND TECHNOLOGY IMPROVEMENTS

These winning companies changed equipment and procedures to reduce the energy intensity of an industrial process.

WINNERS

- **ArcelorMittal Dofasco Inc.,** Hamilton, Ontario
 Winning edge: simultaneously increasing production and decreasing specific energy consumption.

- **Kruger Products L.P.,** New Westminster, British Columbia
 Winning edge: generating clean-burning syngas from wood waste.
3. MONITORING AND TRACKING
These winners enhanced their ability to provide accurate reports on facility- or company-wide energy consumption.

WINNERS

Flakeboard Company Ltd., St. Stephen, New Brunswick
Winning edge: making energy visible and saving money.

Group Savoie Inc., Saint-Quentin, New Brunswick
Winning edge: a sophisticated energy management information system (EMIS).

4. EMPLOYEE AWARENESS AND TRAINING
Award winners in this category helped their employees develop a broader awareness and understanding of energy efficiency opportunities, best practices, and the environmental and economic advantages of energy management.

WINNERS

Irving Paper Limited, Saint John, New Brunswick
Winning edge: an employee awareness and training program that focuses on a core group linked through an energy network.

S.A. Armstrong Limited, Toronto, Ontario
Winning edge: fostering a corporate culture that includes energy efficiency as a core operating principle.

5. INTEGRATED ENERGY EFFICIENCY STRATEGY
These winners used a combination of initiatives to reduce the overall energy consumption of their facility or company.

WINNERS

Cascades, Kingsley Falls, Quebec
Winning edge: their Energy Action Group, dedicated to improving energy efficiency in over 100 plants across Canada.

IBM Canada, Bromont, Quebec
Winning edge: a smart, continuous energy improvement plan.

CIPEC FUTURE LEADERS AWARD

The first CIPEC Future Leaders Awards honoured students whose projects or initiatives have affected industrial energy efficiency in a considerable way. The awards were given to projects that demonstrated energy efficiency improvements in industrial settings or applications. The projects fell into one of the following categories:

Leading-edge projects: These projects involved advanced technologies or approaches that apply or could apply in the future to an industrial setting.

Applied projects or initiatives: These practical projects were developed and implemented in an industrial setting.

The winners were selected by evaluating them against the same criteria used for the CIPEC Leaders awards:

1. improved energy intensity — reduced energy use per unit of production
2. innovation — creativity and ingenuity
3. potential for broader use — transferability to other companies or industry sectors
4. contribution to the environment — reduction in greenhouse gas emissions and improvement in environmental sustainability
5. other benefits — cost benefits, production, quality, maintenance, work environment, and improved competitiveness

WINNERS

Nathaniel Gosman — Master of Arts candidate in environmental studies at the University of Victoria
Winning edge: understanding the economic realities of industrial demand-side management of energy efficiency incentives.

Hossein Safaei — PhD candidate in mechanical engineering at the University of Calgary
Winning edge: extracting more value from an existing process.
Broan-NuTone Canada Inc. is promoting energy efficiency with a cross-functional team tasked with implementing energy-saving projects. The ecoforward™ Green Team is helping energy conservation become part of Broan-NuTone’s culture. The goal is for all employees to think of energy efficiency as part of their day-to-day work.

When it comes to motivating people, John Martinovic, Director of Operations at Broan-NuTone in Mississauga, Ontario, wants people to adopt the following mindset: “The difficult will be done immediately. The impossible may take a while.” He and the ecoforward™ Green Team are encouraging people to never stop doing what’s difficult so that they may eventually achieve what was once thought impossible. “In 2006, if you had told people we were going to reduce energy consumption by 45 percent by 2011, people would have said that’s impossible. But we did it,” Martinovic says.

Broan-NuTone is the world’s largest producer of residential ventilation products. The Broan-NuTone Group is headquartered in Hartford, Wisconsin, and the Mississauga plant employs 193 people.

THE ECOFORWARD™ GREEN TEAM

Broan-NuTone’s ecoforward™ Green Team is led by the Vice-President of Operations, along with a project champion and representatives from key departments like production, engineering, maintenance, customer service and purchasing. The team is responsible for identifying, evaluating, selecting and implementing new energy-saving opportunities. The energy team led a comprehensive study of two years’ worth of energy bills. The results led to six key projects.

Integrating office baseboard heating into a centralized system is eliminating problems associated with baseboard heaters being left on in warm weather. Upgrading the lighting system and installing occupancy sensors has improved the quality of lighting and reduced the overall energy the system uses. Reducing oven and wash line temperatures and eliminating compressors has also yielded savings. Realigning the loading dock allowed the seals around the loading dock doors to be repaired.

The paint oven exhaust fan motor was replaced with a variable frequency drive. This has reduced venting from 3000 cubic feet per minute (cfm) over a 14-hour shift to 3000 cfm for the first hour and less than 1000 cfm for the remaining 13 hours. The team is also investigating new green technologies like destratification fans to reduce space-heating costs, as well as insulating painting and window coating technology.
GO GREEN EMPLOYEE INVOLVEMENT INITIATIVE

One of the ecoforward™ Green Team’s signature achievements was to start the Go Green Employee Involvement Initiative. The initiative is designed to create an energy-saving culture, which will help reduce costs and lower Broan-NuTone’s carbon footprint.

The Go Green team committee currently being established will have a charter, annual activity plans and a formalized submission review process to encourage employees to submit energy-saving ideas. Training and awareness activities will include encouraging employees to think about energy efficiency even when they aren’t at work. Prizes will include temporary preferential parking in a special green spot, and team lunches.

“When we designed the employee initiative, we benchmarked ourselves against Husky and Molson Coors. They won the CIPEC Leadership Employee Awareness and Training Award in 2009,” notes Martinovic. “We sent five staff members for 12 weeks of training focused on leadership, team building and process building.”

Staff ideas are already multiplying, with 45 new ideas submitted in the first three months of 2012, up from 25 ideas in all of 2011. And employees are taking the initiative on their own without asking for credit. Martinovic cites the example of two employees in the maintenance department who replaced 250-watt halogen shipping dock light bulbs with 16-watt LEDs.

“We all take a lot of pride in what we do. That’s why we were so pleased to win our second CIPEC Leadership Award,” Martinovic says. “We won in 2009 for integrated energy efficiency strategy. The ecoforward™ Green Team was a big part of that win, which is why it’s nice to have it recognized explicitly this time around.”

IN 2006, IF YOU HAD TOLD PEOPLE WE WERE GOING TO REDUCE ENERGY CONSUMPTION BY 45 PERCENT BY 2011, PEOPLE WOULD HAVE SAID THAT’S IMPOSSIBLE.

Fast FACTS

Broan-NuTone Canada Inc., Mississauga, Ontario

WINNING EDGE: AN ENERGY MANAGEMENT TEAM THAT ENCOURAGES EMPLOYEES TO THINK OF ENERGY EFFICIENCY AS PART OF THEIR DAY-TO-DAY WORK.

- Broan-NuTone is the world’s largest producer of residential ventilation products.
- A cross-functional team promotes energy efficiency at the corporate level.
- Six key energy-saving projects were implemented in 2010.
- Energy consumption was reduced by 23 percent from 2009 to 2011 (and by 45 percent overall between 2006 and 2011).
Mondelez Canada Inc. created an energy team at its Gladstone chocolate factory in Toronto with a plan to achieve major gains in reducing energy and water use and to cut down on wasted production. Known as the Gladstone Green Team, it received senior management’s seal of approval after team leader Doug Dittburner made the case for how much money could be saved through energy efficiency.

Dittburner, Managing Chief Engineer at the Gladstone site, brings decades of energy efficiency experience to his role at Mondelez. He held similar roles at Molson Coors and Unilever, and he represents the food and beverage sector on the CIPEC Task Force Council. His reputation as an engineer who thinks like an environmentalist and an accountant made him the right choice to lead Mondelez’s Gladstone Green Team.

SHOWING THE MONEY TO GET THE MONEY

Using dollar amounts to show how energy efficiency directly affects production is crucial when making the case with senior management for new energy projects. “Show them the money, and then you’ll get the money,” Dittburner says. “The first thing we did was ask ‘Where do we spend the most money?’ Ammonia compressors were the biggest energy users, so we concentrated on them and projected annual savings of $111,000. That got the idea of an energy team off the ground.”

The next step was to conduct a range of audits on everything from steam traps and lighting to refrigeration and process integration. The audits led to projects that delivered $506,000 in annual energy and water savings in 2010–2011. At the same time, the Gladstone chocolate factory’s carbon footprint was reduced by 18 percent.

CIPEC LEADERSHIP AWARD: CORPORATE STEWARDSHIP

MONDELEZ CANADA INC. (CADBURY) FORMERLY KRAFT FOODS INC.

Energy team feeds hunger for energy efficiency at Mondelez

The Green Team’s work was well received. Mondelez has a history of market leadership, so being competitive when it comes to energy efficiency appealed to senior management.
A MARKET LEADER THAT EMBRACES ENERGY EFFICIENCY

The Green Team's work was well received. Mondelez has a history of market leadership, so being competitive when it comes to energy efficiency appealed to senior management. Mondelez is the number-one packaged goods company in Canada. Almost 99 percent of Canadians consume Mondelez products at least once a year. The Gladstone chocolate factory in Toronto employs 423 people and makes the Cadbury Caramilk chocolate bar.

Globally, Mondelez is taking steps to reduce energy usage and identify other ways of meeting its energy needs. In addition to looking at waste streams as a potential source of energy, Mondelez is switching to more efficient lighting and exploring the use of solar and wind. In Canada, Mondelez is using Mega Fans — large high-volume, low-speed fans — in its distribution centres and warehouses to increase overall energy efficiency. In summer, the fans work to increase air velocity, which creates a wind chill effect. In winter, they provide destratification, driving warm air down and providing an energy savings of 25 percent.

Dittburner and the team are using Six Sigma as their chosen tool for improvement. Six Sigma seeks to improve the quality of outputs. It identifies and removes the causes of defects and minimizes variability in manufacturing processes and in business processes. It also includes a set of quality management methods.

SHARING SUCCESS THROUGHOUT THE MONDELEZ FAMILY

The Cadbury plant is also sharing its success with other Mondelez plants. “We arranged for an NRCan Dollars to Sense Energy Management workshop. We hosted 25 health, safety and environment staff from Mondelez's plants across Canada,” Dittburner says. “We want to lead by example and strive to be the most energy-efficient and environmentally friendly plant, people, and community in Mondelez.”

Dittburner is also pleased about winning the CIPEC Leadership Award. “It’s something for us to build on. It definitely gives us more traction with senior management.”

Fast FACTS

Mondelez Canada Inc., formerly Kraft Foods Inc. (Cadbury), Toronto, Ontario

WINNING EDGE: AN ENERGY ACTION GROUP THAT IS INVOLVED IN ALL MAJOR INVESTMENTS MADE BY THE COMPANY.

• The chocolate factory created the Gladstone Green Team to reduce energy and water use and waste production.
• Key energy audits were conducted.
• The plant’s carbon footprint was reduced by 18 percent (against a 2006 base year).
• Annualized savings of at least $506,000 on energy and water costs were achieved in 2010-2011.
ArcelorMittal Dofasco Inc. has improved the energy efficiency and productive capacity of its hot strip mill reheat furnaces. The tough economic realities of the steel business were a big driver behind these process and technology improvements.

“Steelmaking is a very competitive global business. We also face other pressures: the dollar is rising along with the price of the raw materials we use,” says Cameron Mitchell, Manager, Hot Mill Technology at ArcelorMittal Dofasco. “We all know innovation and energy efficiency is necessary to remain competitive.”

About 5000 employees work at the company’s 320-hectare complex in Hamilton at the western end of Lake Ontario on the St. Lawrence Seaway. ArcelorMittal Dofasco is a supplier of high-quality flat-rolled steel for a variety of customers including the oil industry, the auto sector, construction and consumer packaging makers.

A technical team at ArcelorMittal Dofasco spearheaded efficiency gains that have boosted the furnace throughput by 12 tonnes per operating hour. At the same time, the plant decreased the amount of gigajoules of fuel required per tonne of production, resulting in total annual energy savings of approximately 200 terajoules. These gains were driven by three major initiatives: reducing time spent reheating steel slabs; more precise control of reheat furnaces; and real time automation of how the slabs move through the furnace.

REHEATING SLABS

Slabs of steel are heated to 1200°C in the furnace. At this high temperature, the 216 millimetre-thick slabs can be rolled into sheets with an average thickness of 3 millimetres. One major initiative focused on increasing the number of slabs that entered the furnace above 400°C. This reduced the additional energy required to heat the slabs to the 1200°C target. Typically, 10 percent of the slabs went into the furnace charged above 400°C. This ratio was increased to 15 percent, leading to savings of about $1 million. Changes were made to the scheduling software system to optimize the charging temperature.
TEMPERATURE CONTROL OF REHEAT FURNACES
Processing steel slabs that enter the finishing mill when they are too hot or not hot enough wastes energy. In another energy efficiency initiative, software was used to manage slabs outside the acceptable temperature range. The software has allowed furnace temperature targets to be set 5°C lower.

AUTOMATED SLAB MANAGEMENT
Removing bottlenecks was another big part of the efficiency gains. “We needed to find a way to accurately measure the trade-off between throughput and energy cost so we could make the best business decisions,” Mitchell says.

There are 30 to 40 slabs in the furnace at any one time. Each slab is in the furnace for about two and a half hours, passing through four different heating zones. The challenge is that slabs of different lengths and grades have to be charged at varying temperatures. “We developed a heating-curve strategy so we could use the minimum heat required,” Mitchell says.

The software provided by the furnace manufacturer was upgraded to dynamically evaluate whether specific slabs should stay in longer, based on the overall requirements of the group of slabs in the furnace at any one time. Mitchell adds that the software is continually improved by the process automation group to wring out energy savings from the process.

LESSONS FOR THE LARGER ARCELORMITTAL FAMILY
“This project was undertaken by a team of 30 at ArcelorMittal Dofasco,” says Kevin Hunt, Hot Mill Energy Team Leader. “We considered every option to improve our production and energy efficiency. The result is a win-win for both our business and our efforts to make steel more sustainable. We are very proud of the recognition from our colleagues at CIPEC.”

The Hamilton plant is also sharing its success with the larger ArcelorMittal family. Every year, all hot strip mill facilities compare themselves across a series of broad metrics. “For similar mills we are the most energy efficient,” Mitchell notes.
CIPEC LEADERSHIP AWARD: PROCESS AND TECHNOLOGY IMPROVEMENTS

KRUGER PRODUCTS L.P.

Generating value with wood waste biomass gasification

Canada’s number-one maker of paper towels and tissues is cleaning up with energy savings. Kruger Products L.P.’s New Westminster, B.C. mill is generating energy with wood waste. Known as biomass gasification, this process is on track to reducing energy consumption and greenhouse gas emissions at the mill by 15 percent between 2010 and 2015. Fuel costs were reduced by $1.8 million in 2010.

The biomass gasification system burns unprocessed bark and wood in a dome-shaped chamber to produce clean-burning syngas. This synthetic gas is used to produce steam for drying paper. The wood and bark used for fuel would otherwise be going to the landfill.

LOW EMISSIONS MAKE URBAN LOCATION FEASIBLE

Kruger’s mill is on the Fraser River in a densely populated Vancouver suburb. “It had been more than 15 years since the Greater Vancouver Regional District had approved a wood-burning project so we had to be very careful in our choice of technology. The particulate emissions from our system are an order of magnitude lower than what a hog fuel boiler would produce,” says Frank van Biesen, Vice President of Technology at Kruger. In a hog fuel boiler, when the usual feedstock of waste wood has a moisture content that’s too high, or when steam demand exceeds the capacity of the boiler fired on wood alone, then natural gas or other fuel has to be burned.

The Kruger gasification system reduces greenhouse gas emissions and fuel costs and exceeds the stringent local regulations for air quality. The gasification control system allows the gasification plant to match the energy load better than the previous biomass boiler. The syngas replaces 400 terajoules in annual natural gas and oil use, and also generates 40,000 pounds per hour of steam. It reduced carbon dioxide emissions by about 16 kilotonnes in 2010, allowing carbon emission taxes to be reduced by about $400,000 compared with those associated with the previous boiler. Maintenance and operation costs are also estimated to be $300,000 less than for the old boiler.
NEW DIRECT-FIRED GASIFICATION SYSTEM

“The project is the first commercial demonstration of a new direct-fired boiler biomass gasification system,” van Biesen says. The gasification plant opened in December 2009, the year after the company made energy management a permanent endeavour to reduce its dependence on fossil fuels and be proactive in complying with regulations. The New Westminster mill was also well-suited to a switch to biomass because of impending carbon taxes and the availability of biomass.

Kruger chose a turnkey gasification system from Nexterra Systems because of its low emissions and low life-cycle costs. “In an urban area and in a tough economy, we had to find the cleanest and most cost-competitive technology available,” van Biesen says. The gasification system fits into available space at the mill and uses the existing biomass handling system, storage bin and electrostatic precipitator, which removes particulates.

Kruger is part of a project consortium that includes Nexterra and FPInnovations, which ran tests to verify and optimize the gasification system’s performance. The multimillion-dollar project received support from CanmetENERGY, Western Economic Diversification Canada and the province of British Columbia.

MORE CAPACITY READY TO COME ON STREAM

The gasification system’s output will eventually be increased by 50 percent because the boiler is already sized for a larger capacity. Kruger is also looking at how new developments in renewable energy could be incorporated into its operations. “The gasification project is just one component of our roadmap for continuous improvement,” says van Biesen.

However, given the competition posed by cheap natural gas, he has been forced to temper his enthusiasm. “Our owner asks when we are going to reproduce this success. We’re keen to replicate it but we can’t right now because it hinges on the price of fossil fuels.” He adds that natural gas would have to be in the $8/GJ range to make the economics of expanding the system work.

THE SYNGAS REPLACES 400 TERAJOULES IN ANNUAL NATURAL GAS AND OIL USE, AND ALSO GENERATES 40 000 POUNDS PER HOUR OF STEAM.

Fast FACTS

Kruger Products L.P., New Westminster, B.C.
WINNING EDGE: GENERATING CLEAN-BURNING SYNGAS FROM WOOD WASTE.
• Kruger installed a biomass gasification system that produces syngas (synthetic gas).
• The system reduced carbon dioxide emissions by 16 kilotonnes in 2010.
• The company saved $1.8 million in natural gas in 2010.
• Low emissions allow the system to operate in an urban area.
Making energy visible at all levels of an organization is key to maximizing the benefits of energy efficiency. But to deliver this level of detail in real time requires real work. Flakeboard Company Ltd. is using a Real-Time Energy Management Information System (RtEMIS) to monitor energy consumption against performance targets.

“Our mill is composed of many sub-mills and has grown relatively slowly over time,” says Pat Burke, Electrical Systems Coordinator at Flakeboard. “Because of this, many of the energy services overlapped, and it was difficult to allocate the costs for energy to our different mills. Our RtEMIS system was custom-developed by ADM Systems Engineering because we couldn’t find a commercially available program at the time.”

Flakeboard’s operation in St. Stephen, New Brunswick, is one of the company’s seven facilities that together manufacture a diverse line of composite panel products like particleboard and medium-density fibreboard. The plant employs 230 people. These staff members are now engaged and empowered by RtEMIS to spot energy savings and make operational changes. “When you think of energy as a fixed cost, you just pay the bills as they come in. RtEMIS showed us that energy is not a fixed cost. Energy is a variable operating cost,” Burke says.

PLAN, MAKE DECISIONS AND TAKE ACTION WITH EMIS

An Energy Management Information System (EMIS) is a performance management system that enables individuals and organizations to plan, make decisions and take effective action to manage energy use and costs. It converts energy and utility driver data into energy performance information. This conversion is done using performance equations that are compared with dynamic energy targets. Flakeboard now has 33 energy account centres responsible for energy consumption. Managers and coordinators are challenged to meet or exceed energy management targets, while a company-wide energy team provides training and support.

“Having an energy team helps spread the workload of setting up EMIS. You can’t leave it up to one person. To build this system requires a huge amount of time,” says Burke, who led the commissioning of Flakeboard’s RtEMIS in 2010. “It requires a dedicated group of people to complete the process. Everyone needs to buy into the process.”

To realize the full potential of RtEMIS, Flakeboard installed electrical, gas, oil, steam, water and compressed air meters and an OSIsoft process information data historian, which turns raw data into actionable information. The company is also maintaining records in terms of energy consumption and energy-related expenses.
SAVING AN ESTIMATED $1 MILLION IN ENERGY COSTS OVER THREE YEARS

An initial EMIS audit revealed that the company could save about $1 million in energy costs over three years. Burke is confident that RtEMIS is delivering a 3.2 percent cut in energy use. He estimates that the savings are greater, but he only likes to use numbers that he “can prove 100 percent.” Based on the results of the EMIS audit and implementation plan, senior management committed a budget of $270,000 to develop software, buy new meters and train employees.

Burke also stressed the positive role that government funding played in the decision to adopt EMIS. Efficiency New Brunswick is working with about two dozen facilities that are interested in or actively pursuing EMIS implementation. Natural Resources Canada, through its Office of Energy Efficiency, also has EMIS resources for industry. “We have participated in an EMIS webinar hosted by NRCan. It was a good opportunity for us to spread the EMIS message and to give back to the NRCan program,” Burke says.

The RtEMIS-led changes at Flakeboard have reduced peak demand from a 2011 high of 13 megawatts to an average of 11.7 megawatts since October 2011. The goal is to reduce total energy consumption costs by $250,000 per year. Flakeboard is on track to do this after recording $270,000 in savings in 2011. In the first two months of 2012, Flakeboard recorded savings of $102,000 and is expected to exceed 2011 savings.

SHARING THE EMIS EXPERIENCE

The St. Stephen plant’s RtEMIS approach is being copied by other Flakeboard facilities in North America and the system is being used as a model for other New Brunswick industrial companies through Efficiency NB programs.

RtEMIS has put Flakeboard on the path to making energy visible and saving money. Burke can’t imagine operating without it. “Trying to save energy without a systematic approach to energy information is like finding your way around a strange city without a map. You will get lost.”

Fast FACTS

Flakeboard Company Ltd., St. Stephen, New Brunswick

WINNING EDGE: MAKING ENERGY VISIBLE AND SAVING MONEY.

- Composite wood panel producer deployed a fully integrated real-time energy management information System (RtEMIS).
- The mill reduced peak demand by 1.2 megawatts (MW) in 2011.
- The goal is to reduce energy consumption by $250,000 per year.
- Senior management committed a budget of $270,000 to get EMIS off the ground.
CIPEC LEADERSHIP AWARD: MONITORING AND TRACKING

GROUPE SAVOIE INC.

Fifty-one ways to track energy

When it comes to tracking energy, Group Savoie Inc. does it 51 different ways. That adds up to a lot of monitoring, tracking and reporting. This hardwood products producer in Saint-Quentin, New Brunswick, has adopted a sophisticated energy management information system (EMIS) for its two sawmills, one pallet plant, one component plant, one pellet plant and a dry kiln. Groupe Savoie is a family business with over 500 employees; 274 work in Saint-Quentin, while the rest work in the company’s other operations in New Brunswick and Nova Scotia.

EMIS IS A GAME CHANGER

Data from 51 various kinds of meters and other measurement tools is collected over a fibre optic network connecting each of the plants. EMIS software validates the data, creates graphics showing power consumption and sends e-mail alarms or text messages when peak power use is exceeded.

“The alarms are very useful to identify and raise opportunities for improvement. We have alarm set-points on each meter. So if a piece of equipment, like a compressor, doesn’t perform as usual, the alarm tells us to go onto the floor and fix it,” says Tobby Leclair, the plant’s Service Manager.

IMPRESSIVE ENERGY SAVINGS

Initially, the company aimed to reduce energy consumption by 2 percent per year and cut carbon dioxide emissions by more than 1100 tonnes. Energy savings are projected to be worth about $125,000 per year on a company-wide energy bill of about $2 million — mainly for electricity, the primary energy source for the company. The company has a 3 percent energy reduction target for 2012.

Groupe Savoie grew so quickly over the last 10 years that Leclair says “we used motors that were available at the time without worrying too much if they were sized properly.” Now, with EMIS to guide them, Leclair and the energy group are right-sizing motors to particular tasks so that, in many cases, the same functions can be performed with smaller horsepower motors. All of the plant’s old compressors are also being upgraded with variable frequency drives.

“One of the other big benefits of EMIS is that it gives us the data we need to identify and justify energy projects. We can give management the budget numbers they need,” Leclair says. EMIS is also allowing the energy group to audit past projects and demonstrate how they are stacking up in real time compared to the results that were projected.
SKILLED PEOPLE ARE STILL KEY

Nevertheless, Leclair is quick to point out that data and systems can only take energy efficiency so far. Skilled people are still key. Getting the EMIS up and running by the end of 2009 took a year of hard work. A team of 10 people each averaged about three to four hours on the project every week.

“You have to involve a lot of different people on your energy team. We have people from every sector — from management, to accounting and engineering. Our next step is to engage all our employees.” Leclair is also working with management to see if a full-time energy champion can be hired by the end of 2012.

TAKING ADVANTAGE OF NRCAN PROGRAMS

To motivate employees, Leclair is relying in part on the Team Up for Energy Savings guide from Natural Resources Canada’s Office of Energy Efficiency. It is based on an easy three-step approach to help industrial users build an energy-saving culture in the workplace.

“Winning the Energy 2011 Award was good for our team spirit. It showed that we can be leaders and it reinforced how useful CIPEC is when we want to find out about things like motivating employees,” Leclair says.

Leclair and the energy group are already giving back to CIPEC. They have participated in EMIS webinars so other CIPEC Leaders can learn from Group Savoie’s experience.

“ONE OF THE OTHER BIG BENEFITS OF EMIS IS THAT IT GIVES US THE DATA WE NEED TO IDENTIFY AND JUSTIFY ENERGY PROJECTS. WE CAN GIVE MANAGEMENT THE BUDGET NUMBERS THEY NEED.”

Fast FACTS

Group Savoie Inc., Saint-Quentin, New Brunswick

WINNING EDGE: A SOPHISTICATED ENERGY MANAGEMENT INFORMATION SYSTEM (EMIS).

- A hardwood products producer that implemented EMIS in multiple facilities.
- The system tracks energy use in 51 different ways.
- Energy-saving projects can be identified and justified.
- EMIS helped save $125,000 on energy costs in 2010-2011.
Energy matters at Irving Paper Limited. In fact, it matters so much that its employee awareness program is called “Energy Matters.” The corporate branding was adopted in 2010 to increase the visibility of energy management opportunities across the J.D. Irving group of companies. Irving Paper supports a user group of 20 employees who are linked through an energy network, driven by a core team of six people.

“Energy Matters is a branded energy awareness campaign that includes a Web portal with tools and best practices. Employee learning and training plans are also integrated with energy efficiency objectives,” says Darwin Parker, Director of Project Engineering, who leads the energy team within the pulp and paper division.

As part of the push to make energy matter, staff also attend Natural Resource Canada’s Dollars to $ense energy management workshops and are encouraged to take the Efficiency NB Certified Energy Management Course. An energy management newsletter celebrates success so others can learn from it.

CELEBRATING A SUCCESS STORY

The members of the energy network who work at Irving Paper’s mill in Saint John, New Brunswick, have a lot of success to celebrate. They’ve played an important role in helping Irving’s pulp and paper division reduce its carbon footprint and fossil fuel consumption by 50 percent over the last five years. By focusing on employee awareness, training and technology, Irving is leveraging investments of $13 million that have resulted in annual energy reductions of 5 percent per year. Irving has also cut 50 000 tonnes of carbon dioxide per year. Energy costs account for up to 30 percent of Irving Paper’s manufacturing costs – the most significant portion being electricity.

“These reductions translate to a reduction of 168 000 tonnes of greenhouse gas – the equivalent of taking 32 000 cars off the road,” says Mark Mosher Vice-President of the pulp and paper division at J.D. Irving.
ENERGY MATTERS SUPPORTS AN ENERGY MANAGEMENT INFORMATION SYSTEM

A large measure of these impressive results is driven by EMIS, making energy visible for employees. EMIS is being used at the Saint John mill and it is being rolled out at other Irving sites.

EMIS is a performance management system that enables individuals and organizations to plan, make decisions and take action to manage energy use and costs. EMIS converts energy data into energy performance information. This conversion is done using performance equations that are compared with dynamic energy targets. EMIS data also yields key performance indicators that are reviewed and discussed by the management team and line supervisors who are accountable for energy consumption. EMIS and Energy Matters run on parallel tracks aimed at the same goal. EMIS makes energy data visible.

THE ENVIRONMENTAL AND ECONOMIC ADVANTAGES OF ENERGY MANAGEMENT

"Using the data from our EMIS, our team has developed and implemented an energy management strategy that has resulted in several large-scale heat recovery projects," says Mark Mosher, Vice President of the Pulp and Paper Division. "Our team is focused on achieving the environmental and economic advantages of energy management. This investment in people and technology is good for the environment and key to securing jobs at the mill. Improving energy costs and reducing our carbon footprint is part of our culture, and the lessons learned are delivering benefits throughout our organization."

Winning the Energy 2011 Award has helped to validate the work of the Energy Matters program. It also helps with the level of visibility and opportunity for energy efficiency across J.D. Irving.

Fast FACTS

Irving Paper Limited, Saint John, New Brunswick

WINNING EDGE: AN EMPLOYEE AWARENESS AND TRAINING PROGRAM THAT FOCUSES ON A CORE GROUP LINKED THROUGH AN ENERGY NETWORK.

- J.D. Irving launched an energy awareness campaign called “Energy Matters.”
- The program includes integrated employee learning plans with energy efficiency objectives.
- Energy Matters is helping to make energy visible through EMIS implementation.
- Irving Paper has reduced total energy use by 5 percent per year and carbon dioxide emissions by 50 kilotonnes.
CIPEC LEADERSHIP AWARD: EMPLOYEE AWARENESS AND TRAINING

S.A. ARMSTRONG LIMITED

Powerbreak awareness campaign boosts energy efficiency

Family owned since 1934, S.A. Armstrong Limited has relied on best practices to grow from a Toronto-based company into a global leader in the design and manufacture of pumps and integrated cooling and energy management systems in North America, Europe and Asia. Part of this success rests on fostering a corporate culture that includes energy efficiency as a core operating principle. “Our goal is to reduce overall energy use by at least 5 percent per year,” says Gaby Haddad, Manufacturing Engineering Manager at Armstrong. “We will accomplish this by undertaking new projects from our list of 50-plus future projects.”

So it was only natural that Armstrong initiated the Powerbreak awareness campaign to boost energy efficiency. Aimed at the 320 employees in the Toronto plant, Powerbreak has four major elements designed to reduce energy consumption:

1. employee energy efficiency awareness days and publicity campaigns
2. employee learning plans integrated with energy efficiency objectives
3. incentive programs to reward employee efforts to improve energy efficiency
4. ongoing employee training to increase energy efficiency awareness and practices

The Powerbreak campaign was spearheaded by the Green Team, which is made up of champions who undertake energy conservation and retrofit projects at the Canadian head office. The company saved over $77,000 in annual energy costs in 2010-2011, and is now developing new projects to improve energy efficiency.

ENERGY EFFICIENCY AWARENESS DAYS AND PUBLICITY

Awareness days are often centred on lunch and learn sessions to promote activities like powering down workstations. These efforts are backed by announcements in the employee newsletter. In essence, communications are key to sustaining Armstrong’s culture of energy efficiency.

“We always keep the employees informed so they can make the connection between company changes and energy efficiency. When we installed a solar wall, we explained what it was for. And when we planted trees in the parking lot, we wanted people to understand that it was to reduce the heat-island effect,” says Margaret Logan, Senior Project Manager and Green Team member.
LEARNING PLANS AND ENERGY EFFICIENCY

OBJECTIVES

Employees are given ongoing training to help them understand and support energy efficiency objectives.

INCENTIVE PROGRAMS

The company holds contests for staff members to see who can save the most energy. Winners are expected to document how they achieved energy savings so they can learn from one another about new environmentally friendly solutions and practices. Prizes and other incentives reinforce the commitment to energy efficiency. For example, winners of $200 Home Depot gift cards have to report the energy-efficient purchases they make.

In the summer of 2011, the company launched the “Start saving at home today” contest. This contest was repeated in the summer of 2012. The largest percentage reduction over a three-month period earns the winner $10 for each percentage point they save on their electricity bill compared with the previous year. The prize goes towards an energy-saving purchase, and the winner has to share how energy savings are achieved. Engaging employees in projects outside the workplace like this one is proving to be a popular way to increase overall energy efficiency awareness.

TRAINING

Training opportunities are designed to improve employee skills. In 2012, the focus is on preparing eight staff members to become Leadership in Energy and Environmental Design Accredited Professionals (LEED AP). Logan and three other accredited staff members are coaching their colleagues. The LEED AP credential signifies advanced knowledge in green building practices.

It’s these kinds of skills that are helping S.A. Armstrong Limited leverage its employee awareness and training efforts to help customers. The company reaches out to customers through sponsored sustainability roundtables focused on emerging trends and opportunities in sustainable energy management in the commercial and institutional building sector.

Haddad, Logan and their colleagues plan to launch Powerbreak II to help galvanize staff to take on some of the more than 50 energy saving projects on the company’s agenda. “Our CIPEC award is nice to have as we work to motivate people to prioritize energy efficiency. It makes all of us proud to be recognized,” Logan says.

THE POWERBREAK CAMPAIGN WAS SPEAR-HEADED BY THE GREEN TEAM, WHICH IS MADE UP OF CHAMPIONS WHO UNDERTAKE ENERGY CONSERVATION AND RETROFIT PROJECTS AT THE CANADIAN HEAD OFFICE.

Fast FACTS

S.A. Armstrong Limited, Toronto, Ontario

WINNING EDGE: FOSTERING A CORPORATE CULTURE THAT INCLUDES ENERGY EFFICIENCY AS A CORE OPERATING PRINCIPLE.

- Energy savings goal: reducing total energy use by at least 5 percent per year.
- In 2010-2011, the company saved over $77,000 in annual energy costs.
- The company reaches out to customers through sponsored sustainability roundtables.
Energy Action Group (EAG) is at the heart of Cascades’ success in reducing energy consumption. Cascades, which produces packaging and tissue products made mainly of recycled fibres, describes itself as “Green by Nature.” In fact, Cascades is so serious about pursuing an integrated energy efficiency strategy that its Energy Action Group is involved in all major investments made by the company.

The company’s focus on this strategy is paying off as Cascades pursues its goal of reducing energy consumption by 3 percent per year. Audits, energy reduction targets and performance monitoring saved over $60 million in energy costs from 2004 to 2012. The Energy Action Group, which is dedicated to improving energy efficiency in more than 100 plants across Canada and the United States, has implemented more than 200 projects company-wide from 2004 to 2012.

ENERGY ACTION GROUP DRIVEN BY ENGINEERS

The Energy Action Group is made up mainly of engineers who carry out energy audits and identify energy reduction targets for all plants. The group also recommends and validates actions for the implementation of energy-saving projects. The group has spearheaded a wide range of projects that have touched virtually every corner of the company. Examples include projects to optimize boilers, motors, industrial ovens and dryers, refrigeration, compressed air, water networks, heating, ventilation and air conditioning (HVAC), building envelope, lighting and production processes. Cascades also has a corporate policy that requires any equipment that is nearing the end of its life — like compressors, motors or lighting — to be replaced by more efficient technologies.

In the late 1990s, Cascades set up its Energy Action Group in Kingsey Falls, Quebec, with one employee. Now there are 20 staff members in the group. “We operate like an external consulting firm. Plant managers have to pay for our services,” says Emilie Allen, Corporate Energy Director at Cascades. The group is also branching out to offer its services to other industrial energy users. Rio Tinto Alcan, the global aluminum producer, and Bombardier, a world leader in train and airplane manufacturing, have worked with the group, helping to develop its position as a profit centre within Cascades.
SHARING BEST PRACTICES COMPANY-WIDE

The success of their mission to deliver an integrated energy efficiency strategy at Cascades can be seen in how plant managers now approach energy efficiency. “Before the energy group got started, there was no sharing or cooperation between plant managers. Each unit was competing against the other,” Allen says. Today, EAG engineers are in constant contact with plant managers and supervisors who form internal energy committees. Cascades publishes monthly, quarterly and annual reports that compare the energy performance of its plants, so best practices are shared company-wide.

CORPORATE ENERGY FUND FINANCES PROJECTS

The Energy Action Group can also turn to a corporate energy fund established solely for energy efficiency projects. The fund ensures that energy projects do not get overlooked or lose out because of competition for capital with production-related investments. The fund, not the mills, assumes the costs and risk of energy projects, which means the mills are more willing to make changes. The fund is replenished based on savings generated by energy efficiency projects.

From 2004 to 2012, Cascades invested $32 million through the energy fund to finance energy projects that generated $61 million in energy savings.

EMIS PROVING TO BE A KEY TOOL

The Energy Action Group also relies on an Energy Management Information System (EMIS) to measure energy consumption in real time. This allows Cascades to compare plants with each other and target the least efficient plants in order to focus on them and correct discrepancies. “EMIS is definitely helping us maximize integration. We recently began using a new chemical, but it had a bad reaction with another chemical. This affected the energy we needed for the dryer process. EMIS helped us spot and fix the problem,” Allen says.

Thanks to EMIS and a tradition of delivering on the promise of energy efficiency since EAG was founded, Allen and her colleagues are looking forward to more success in the future. “I was happy we won the CIPEC award. Very often you hear that energy efficiency success comes mainly in the early days. We’ve been at this for 15 years and we’re still making good progress. The award was nice recognition of that,” Allen says.

Fast FACTS

- Energy savings goal: reducing total energy use by at least 3 percent per year.
- Cascades implemented over 200 energy efficiency projects since 2004.
- The Energy Action Group has 20 staff members; most are engineers.
- From 2004 to 2012, Cascades invested $32 million through a corporate energy fund to finance energy projects that generated more than $60 million in energy savings.
IBM CANADA

Taking a smart approach to integrated energy efficiency

IBM Canada is inviting its customers to join in on building a smarter planet. This corporate credo is reflected in IBM Canada’s approach to energy efficiency. The company is using a smart continuous improvement strategy to deliver integrated energy efficiency. IBM is also offering intelligent building management solutions to its clients — solutions that help them lower building operating costs and identify energy optimization opportunities.

Some of the smart things IBM has accomplished over the years are on display at its Bromont, Quebec plant. The plant is the company’s largest semiconductor assembly and testing facility in the world. It’s also IBM’s only manufacturing plant in Canada. Each year, the plant exports about $700 million in products. Every system produced worldwide by IBM uses at least one Bromont-manufactured component. And the three most popular game consoles in the world — Microsoft Xbox 360, Sony PlayStation 3 and Nintendo Wii — all contain processors from Bromont.

From 2009 to 2011, the Bromont plant reduced annual energy use by an average of 8 percent thanks to more than 70 conservation projects. It has also reduced greenhouse gas emissions by more than 24 percent, compared with 2005. The IBM Bromont plant also qualified for Hydro-Québec’s Energy Savers’ Élite level by reducing annual electricity consumption by 20 percent between 2005 and 2010. In the last 10 years, savings from energy conservation exceeded $5 million.

REGULARLY SURPASSING CORPORATE ENERGY REDUCTION TARGETS

“For the last 15 years, Bromont has always beaten our corporate energy reduction target of 4 percent. We’ve ranged from 4.1 to 13.8 percent annual reductions,” says Yves Veilleux, Manager, Energy and Environmental Affairs. Projects like replacing some compressed air systems with a central vacuum system have reaped a tenfold gain in efficiency.

This success is due in large part to the Energy Management Team, which develops an annual energy management plan. This integrated five-point plan is based on the principle of continuous improvement. After being submitted to the plant’s senior management for approval, the plan facilitates the sharing of ideas between sectors or buildings and the standardization of operations to maximize energy efficiency.
ENERGY MANAGEMENT PLAN COMPONENTS

1. annual objectives
2. energy checklists for all mechanical and chemical systems and for infrastructure
3. regular monitoring of all conservation projects
4. energy team visits to manufacturing sectors
5. sharing information with partners

The energy team is staffed by full-time professionals led by Yves Veilleux, who works for IBM across Canada. The team also includes senior energy coordinators and energy efficiency specialists. In the manufacturing plant, the team is further supported by an energy committee made up of ISO 14001 representatives who cover all sectors.

ENCOURAGING EMPLOYEE INVOLVEMENT

The idea of integration extends beyond the energy management plan to IBM staff members themselves. “It’s part of our culture. The environment and energy efficiency are part of our new employee orientation process. And twice a year, the plant manager meets all employees and discusses energy efficiency targets and results,” says Jean-Pierre Boulianne, Senior Energy Coordinator.

The energy team also plans to involve employees more closely in energy management decisions by giving them greater control over equipment. “We want them to do things like turning a furnace to off instead of leaving it idling for a whole shift,” Boulianne says.

The Bromont site is also introducing an energy management information system (EMIS) called Smarter Building. Smarter Building collects energy and utility driver data, and generates automatic alerts and work orders to respond to the alerts. It allows building systems to be managed against dynamic performance rules and helps improve overall operational performance while reducing energy use.

“We participated in a CIPEC EMIS webinar and we were able to compare improvement approaches associated with energy management information systems. It was worthwhile, and we expect to learn more as we move forward and implement and improve our Smarter Building system,” Veilleux says.

Fast FACTS

IBM Canada, Bromont, Quebec

WINNING EDGE: A SMART CONTINUOUS IMPROVEMENT PLAN.

- Energy savings goal: Conserve energy by at least 4 percent per year.
- Annual energy savings have exceeded $5 million since 2000.
- The Energy Management Team is staffed by full-time professionals.
- Bromont is the company’s largest semiconductor packaging facility in the world.
Nathaniel Gosman wants governments, utilities and industry to make the most of industrial incentive programs designed to manage industrial demand for energy. He is completing a Master of Arts in Environmental Studies at the University of Victoria and working as an energy efficiency standards analyst for the Ministry of Energy and Mines in British Columbia.

Gosman looked specifically at how to optimize incentive program design to minimize risks that affect the development and performance of energy efficiency measures. Project development risks can be loosely defined as financial and human resource constraints that prevent industrial firms from participating in incentive programs. Project performance risks are those associated with an incentive program failing to deliver planned benefits over time.

His findings suggest that utilities and governments can mitigate these risks and achieve a high degree of energy savings reliability through two primary approaches. One is to match incentive offers to industrial business cycles. The other is to rely on energy management software tools that provide energy performance feedback to industrial firms and provide a platform for measurement and verification of energy saving measures.

MATCHING INCENTIVES TO INDUSTRIAL BUSINESS CYCLES

Matching incentives to business and investment cycles means understanding how energy efficiency improvements will be viewed by industrial players based on how their business is performing and where their investment priorities lie. “Consider a sector that’s booming, like copper. For an incentive to work, the operational savings from the energy efficiency measure will have to compete successfully with the returns a copper mining company would receive from investing in measures that increase output and market share,” Gosman says.

At the opposite end of the spectrum, a sector that is not performing well, like pulp and paper, would view upfront investments tied to an incentive program as unaffordable.

To make an incentive program work in either case would involve providing targeted incentives that are sufficient to overcome capital barriers or providing incentives for measures that don’t require large capital investment on the part of industry, like operations and maintenance improvements.

RELYING ON ENERGY MANAGEMENT SOFTWARE TOOLS

Gosman sees a growing role for energy management software tools to encourage the uptake of incentives. These tools should help ensure the sustainability of energy savings from efficiency measures and streamline the measurement and verification process. “EMIS offers a double benefit. It provides energy performance feedback to industrial firms and gives utilities an avenue to measure and verify energy savings in a relatively non-invasive manner.”

Gosman’s recommendations for industrial demand-side management programs could contribute significantly to helping utilities and governments design and deliver incentive programs and meet increasing requirements for energy efficiency. Gosman will likely be in a position to influence the demand for industrial demand-side management incentive programs. He plans to earn his Certified Energy Management designation and pursue a full-time position with B.C.’s Ministry of Energy and Mines. “The Energy 2011 Award helped validate my work. It has definitely opened doors for me,” Gosman says.
Waste heat recovery from compressed air energy storage plants

Compressed air energy storage plants use comparatively inexpensive off-peak electricity to compress air into underground or above-ground reservoirs. The stored air is then expanded in modified gas turbines to generate high-value peak electricity during periods of high electricity demand. Hossein Safaei, a PhD candidate in mechanical engineering at the University of Calgary, has plans to make this process even more attractive.

“The compressors produce waste heat. If this heat is captured, it could be used for space and water heating applications through district heating networks,” Safaei says. District heating is making inroads in Canadian cities — Montréal, Toronto, Calgary and Vancouver all have district heating systems. The systems often generate thermal energy through heat recovery from gas turbines called combined heat and power facilities, or from combustion of fuel in boilers. This happens in a central location and then heat is distributed through outbound and inbound pipes. Some systems also include heat storage facilities to even out peak load demands.

CHALLENGES OF HEAT RECOVERY FROM COMPRESSED AIR ENERGY STORAGE

Safaei’s research is focused on assessing the technical and economic challenges and potential of heat recovery options from compressed air energy storage plants. Currently, two utility-scale compressed air energy storage plants are in operation — a 290-megawatt facility in Huntorf, Germany and a 110-megawatt unit in McIntosh, Alabama. Several more are in the design stage.

Safaei is evaluating the opportunity to add a heat recovery unit to the compression facility of the plants. This facility would be paired with a conventional district heating network. It would reduce fuel consumption by the boilers in the district heating plant by recovering waste heat from the air compressors. The additional revenue from the sale of wasted heat would enhance the economics of compressed air energy storage plants.

Another key component of a compressed air energy storage plant is the storage facility for the compressed air. A naturally-occurring formation, like a depleted natural gas reservoir, or a relatively inexpensive man-made underground cavern is ideal, but above-ground storage tanks can also be used. Safaei is studying the suitability of depleted natural gas reservoirs outside Calgary. Safaei and his academic supervisors, David Keith and Ronald Hugo, have filed a patent on their work.

BETTER INTEGRATION OF RENEWABLE ENERGY

Safaei acknowledges that today’s low prices for natural gas make the idea of generating heat and power from stored compressed air uneconomical for now. But rising fuel prices or regulation favouring cleaner heat and power generation would change the equation. He is also encouraged by the growth of renewable energy, especially wind and solar, in the electric grid. “High penetration levels of wind and solar-based electricity into the generation mix often imply substantial fluctuations in electricity prices. Compressed air energy storage can mitigate these fluctuations by storing excess off-peak energy to be used during peak-demand times.”

While Safaei continues to work on his idea, he plans to pursue a position as an energy analyst for a government department or a research and development firm working to reduce greenhouse gas emissions in the electricity sector. He is currently employed part time at Carbon Engineering in Calgary, a private firm working to commercialize direct air capture of carbon dioxide. “Winning the Energy 2011 award is a nice addition to my resume. It was also excellent to be able to network with a wide range of delegates from industry, government and research institutes.”
ENERGY EFFICIENCY PROGRAMS AND TOOLS FOR INDUSTRY

NATURAL RESOURCES CANADA (NRCAN) OFFERS SEVERAL ENERGY EFFICIENCY AND RENEWABLE ENERGY PROGRAMS AND SERVICES TO MEET THE NEEDS OF CANADIAN INDUSTRY

NETWORKING OPPORTUNITIES

• Canadian Industry Program for Energy Conservation (CIPEC)

EMPLOYEE-TRAINING ASSISTANCE

• Dollars to $ense Energy Management Workshops

FINANCIAL SUPPORT

• Cost-shared assistance: To perform ISO 50001 implementation pilots and energy assessments
• Tax savings: Classes 43.1, 43.2 and 29 and Canadian Renewable and Conservation Expenses (CRCE) tax savings program

TECHNICAL SUPPORT

• Canadian Industry Program for Energy Conservation (CIPEC)
• Technical guides, benchmark studies, tools and equipment

ISO 50001 – ENERGY MANAGEMENT SYSTEMS STANDARD

Published in June 2011, the ISO 50001 Energy Management Systems Standard establishes an energy management framework for all types of organizations and companies. This new voluntary standard could quickly become a de facto requirement for businesses competing in today’s globalized world.

ISO 50001 IMPLEMENTATION WILL:

• assist organizations in making better use of their existing energy-consuming assets
• create transparency and facilitate communication on the management of energy resources and the promotion of energy efficiency throughout the supply chain
• lead to significant reductions in energy cost, GHG emissions and other environmental impacts
• promote energy management best practices and reinforce good energy management behaviours

• assist facilities in evaluating and prioritizing the implementation of new energy-efficient technologies
• allow integration with other organizational management systems, like environmental and health and safety systems. It is compatible with other performance improvement approaches and EnMSs (Superior Energy Performance™, Lean, Theory of Constraints, Six Sigma, 5S, etc.)

COST-SHARED ASSISTANCE

The people behind CIPEC know how to implement energy management programs. Performance measurement, baselines and best practices are what CIPEC is all about. So it was only natural that CIPEC representatives were involved in the negotiations for ISO 50001.

CIPEC members can begin to leverage CIPEC resources now to implement ISO 50001. The ecoENERGY Efficiency for Industry program is offering cost-shared assistance to industrial companies to perform ISO 50001 implementation pilots and energy assessments.

NRCan will provide up to 50 percent of the cost, to a maximum of $25,000, for:

• ISO 50001 Energy Management Systems Standard implementation pilots
• Process integration (PI) studies
• Computational fluid dynamics (CFD) studies

To be eligible, a company must have written approval of its technical proposal from NRCan before beginning the project.

For more information on the ISO 50001 Energy Management System Standard, visit oee.nrcan.gc.ca/industrial/cipec/4101.

Or send an e-mail to info.ind@nrcan-rncan.gc.ca.

WEBINARS

Free online workshops for CIPEC Leaders featuring real-world examples. Topics include ISO 50001 Energy Management Systems Standard, Energy Management Information Systems (EMIS), employee awareness, energy metering, students and their added-value, biomass gasification and more to follow. Webinars are offered on a bi-monthly basis.

For more information send an e-mail to info.ind@nrcan-rncan.gc.ca.
Dollars to Sense Energy Management Workshops

Hundreds of organizations have reduced operating costs by adopting energy-saving practices offered through Dollars to Sense Energy Management Workshops. The workshops are facilitated by leading experts in energy efficiency. The workshops give owners, managers and operators of industrial facilities a competitive edge in managing energy costs.

The Six One-Day Dollars to Sense Workshops Are:

- Energy Management Information Systems (EMIS) – makes energy performance visible and helps organizations apply a systematic approach to energy efficiency
- Recommissioning for Buildings – increases awareness and knowledge of the fundamentals of building recommissioning
- Energy Management Planning – how to plan ahead to realize the benefits of energy management
- Spot the Energy Savings Opportunities – shows how to identify, and capitalize on, immediate savings opportunities through practical exercises and hands-on demonstrations
- Energy Monitoring – shows companies how to measure and analyze energy use
- Energy Efficiency Financing – improves awareness of financing options and skills in obtaining financing for energy efficiency projects

The workshops can also be customized to meet the needs of industrial sector organizations and companies. Professional instructors will consult with the company to identify specific requirements and then assemble the information and resource materials for the target audience.

Register online by visiting the workshop Web site at oee.nrcan-rncan.gc.ca/industrial/training-awareness.

Or contact NRCan to find out more about workshop customization.

Fax: 613-943-5380

E-mail: DollarstoSenseworkshops@nrcan-rncan.gc.ca.

Classes 29, 43.1, and 43.2 and CRCE Tax Savings

For a limited time, companies that invest in manufacturing and processing equipment may take advantage of Class 29 in Schedule II of the Income Tax Regulations (the Regulations). It provides a 50 percent, straight-line Accelerated Capital Cost Allowance (ACCA) for certain manufacturing and processing equipment. Proposals in Budget 2011 to extend this temporary incentive for two years to eligible machinery and equipment acquired before 2014 were enacted December 15, 2011.

Canadian tax law makes specified clean energy generation and conservation equipment, such as photovoltaic panels, wind turbines and bio-fuel production equipment more fiscally attractive for industry.

Under Classes 43.1 and 43.2 of the Regulations, certain capital expenditures on systems that produce heat or electric power efficiently from fossil fuels or from alternative renewable energy sources are eligible for ACCA of 30 percent and 50 percent respectively on a declining balance basis.

Without the accelerated write-offs, many of these assets would be depreciated at annual rates of only 4, 6, 8 or 15 percent.

NRCan is the technical authority for Classes 43.1 and 43.2.

Budget 2012: Jobs Growth and Long-Term Prosperity proposed to expand Class 43.2 with respect to waste-fuelled thermal energy equipment, and equipment of a district energy system that uses thermal energy provided primarily by eligible waste-fuelled thermal energy equipment. It also proposed to expand Class 43.2 to include equipment that uses the residues of plants—generally produced by the agricultural sector—to generate electricity and heat.

In addition to Class 43.1 or Class 43.2 capital cost allowance, the Regulations allow expenses incurred during the development and start-up of renewable energy and energy conservation projects—Canadian Renewable and Conservation Expenses (CRCE)—to be deducted fully or financed through flow-through shares.

To qualify as CRCE, expenses must be incurred for a project in which it is reasonable to expect at least 50 percent of the capital costs incurred would be for equipment described in Class 43.1 or Class 43.2.

For more information on tax savings for industry, visit oee.nrcan-rncan.gc.ca/industrial/financial-assistance/tax-incentives.cfm.
ENERGY MANAGEMENT INFORMATION SYSTEMS – PLANNING MANUAL AND TOOL

The Energy Management Information Systems Tool makes energy performance visible to different levels of the organization so that actions can be taken to create financial value for the company. The tool is also a performance management system that helps reduce energy consumption and cost.

Or send an e-mail to info.ind@nrcan-rncan.gc.ca.
THE YEAR IN REVIEW

CIPEC members continued to make advances in energy efficiency during the past year. These impressive gains were realized thanks to strong leadership and dedication from the CIPEC Executive Board, the Task Force Council and the 26 Task Forces, together with support from the Office of Energy Efficiency.

- Two CIPEC Leaders, St. Marys Cement (Canada) Inc.’s plant in Bowmanville and 3M’s plant in Brockville, were certified to the ISO 50001 Energy Management System Standard.

- St. Marys Cement’s implementation of processes to achieve ISO 50001 since 2005 has seen electricity consumption cut by over 10.3 million kilowatt hours (approximately the same amount of energy used by 880 Canadian homes in one year).

- An ISO 50001 pilot with 3M uncovered savings worth 12 percent of annual energy use, the equivalent of 120 000 gigajoules of energy and 12 780 equivalent tonnes of greenhouse gas emissions.

- The total number of CIPEC Leaders rose to more than 2400.

- Dollars to Sense Energy Management Workshops were delivered to more than 1750 people, bringing the total to more than 23 500 attendees since the workshops were first offered in 1997.

- More than 5537 publications were distributed.

- CIPEC’s estimated total annual energy savings exceeded 0.6 petajoules.

- CIPEC’s estimated reductions in annual GHG emissions totalled 64 kilotonnes.
INDUSTRY SECTOR PROFILES
ENERGY MANAGEMENT THAT WORKS

Accurate measurement and meaningful data are fundamental to measuring energy improvements. Data used in this annual report are collected by Statistics Canada, with funding from Natural Resources Canada (NRCan) and Environment Canada, and supplemented by information received from associations that participate in the Canadian Industry Program for Energy Conservation (CIPEC), as well as other private and government organizations. The data represents entire industrial sectors, not just CIPEC members.

Statistics Canada data for the manufacturing sector are collected through the annual Industrial Consumption of Energy (ICE)\(^1\) survey, which covers approximately 4300 establishments in the manufacturing sector. For each establishment, the survey gathers information on energy fuel consumption for 13 fuel types. Survey results are used to track energy efficiency improvements, calculate carbon dioxide emissions and inform Canadians about energy conservation.

Statistics Canada began streamlining the questionnaire and data collection process in 2004. The changes included standardizing some special industry questionnaires, making provisions for respondents to explain any major changes in energy consumption and thus minimize follow-up inquiries, and converting fuels to a standard unit of measure.

Data analysis and interpretation involves the collective effort of NRCan’s Office of Energy Efficiency (OEE), CIPEC trade associations and the Canadian Industrial Energy End-Use Data and Analysis Centre (CIEEDAC) at Simon Fraser University in Burnaby, British Columbia. The CIEEDAC produces energy intensity indicators for each sector based on production and gross domestic product.

Data from the CIEEDAC are available at www.cieedac.sfu.ca.

\(^1\) The data from the ICE survey are for the 2010 calendar year.
The aluminum sector comprises companies engaged primarily in extracting alumina from bauxite ore, producing aluminum from alumina, refining aluminum by any process, and rolling, drawing, casting, extruding and alloying aluminum and aluminum-based alloy basic shapes. Canada’s aluminum sector is ranked fourth in the world in annual primary aluminum production after the United States, Russia and China and is the second largest exporting country after Russia. The combined output of the aluminum plants in Canada is a major contributor to Canada’s national and local economies. There are 9 aluminum smelters in Quebec and one in British Columbia. As for Alumina refining, there is one site in Arvida and a total of 3 coke calcination plants located in Arvida, Quebec, Kitimat, B.C. and Strathcona, B.C. Although production growth caused an increase in the industry’s total energy use, energy intensity continues to improve compared with 1990 benchmark levels.
ACHIEVEMENTS

Aluminum-producing companies continue their efforts to reduce energy consumption. For example, between 1999 and 2010, members of the Aluminum Association of Canada reduced their consumption of electricity used for aluminum electrolysis by 19 percent; and in 2010, 97.6 percent of electricity used by smelters came from renewable energy.¹

In 2011, Hydro-Québec promoted Alcoa’s Deschambault smelter to Elite status in its Energy Savers’ Circle, which is comprised of corporate leaders in energy efficiency from across the province; they also welcomed Alcoa’s Baie-Comeau smelter as a new member, making all three of the company’s Quebec smelters part of the Energy Savers’ Circle network. During the period from 2007 to 2010, Alcoa’s Quebec plants posted total cumulative energy efficiency gains of more than 600 GWh, just one of the company’s many energy efficiency efforts.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/aluminum.

HIGHLIGHTS

Aluminum Sector — NAICS 331313

![Energy Intensity Index (1990–2010) Base Year 1990 = 1.00](image)

Energy intensity increased by 2.6 percent between 2009 and 2010.

Total energy consumption increased by 0.3 percent and total production decreased by 2.2 percent between 2009 and 2010.

![Energy Sources in Terajoules per Year (TJ/yr)](image)

While most of the sector uses electricity, electricity consumption increased by 1.1 percent while natural gas consumption increased by 21.3 percent between 2009 and 2010, representing 1773 terajoules.

** Confidential includes: Heavy Fuel Oil (HFO), Middle Distillates (LFO) and Propane (LPG).

Data Sources:

¹ Aluminum Association of Canada — 2010 Sustainability Report
The Canadian brewery industry is the largest component of the alcoholic beverage sector, followed by distillery products and the wine industry. This industry brews beer, ale, malt liquors and non-alcoholic beer. Approximately 160 breweries, large and small, operate in Canada. The majority of the establishments are located in Ontario, followed by British Columbia and Quebec, with the remaining located across Canada. The Brewers Association of Canada, established in 1943, is a voluntary association of 23 brewers that represents 97 percent of the beer brewed in Canada.

The Canadian brewery industry has experienced considerable transformation and continues to do so. Over the years, the structure of the industry has changed through mergers and acquisitions, along with considerable growth in microbreweries. According to the Canadian Business Patterns database, the largest firms could have over 500 employees at a single establishment, while a small microbrewery might consist of one establishment with fewer than 50 employees. The production, marketing and sale of Canadian beer generate more than 205 000 jobs, with about 13 000 people working directly for Canada’s brewers. The typical costs of energy and utilities vary between 3 percent and 8 percent of a brewery’s budget, depending on its size and production variables.
ACHIEVEMENTS

Many breweries have been exploring new opportunities for energy efficiency. They are also introducing water optimization processes and technologies. The industry also continues to invest heavily in new, more efficient technology that will ultimately improve energy and water usage, as well as the amount of materials required for packaging.

Labatt Breweries of Canada’s Energy Cup Challenge is making significant contributions towards achieving overall environmental targets. The company launched a comprehensive, six-week initiative to reduce energy consumption at every brewery in Canada. The initiative focused on identifying and correcting utilities leaks and misuse, identifying and communicating effective process and lighting shutdown, creating awareness of energy consumption and costs within employees’ area of influence, and creating a sustainable mechanism for ongoing employee engagement in energy use reduction. The project was extended by two weeks as a result of widespread and overwhelmingly positive response. The results were impressive, with a total year-over-year reduction in energy consumption of 8 percent and a reduction in water consumption of 17.8 percent.

In addition to brewing certified organic and extract-free beer, Beau’s Brewery in Vankleek Hill, Ontario, was the first company in Eastern Ontario to engage the Guelph Food Technology Centre’s sustainability division for an energy audit. The brewery also has an impressive commitment to sustainability. They produce 100 percent post-consumer recycled posters, brochures and coasters as well as environmentally friendly packaging.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/brewery.

HIGHLIGHTS

Brewery Sector — NAICS 31212

Natural gas consumption increased by 7.4 percent and electricity consumption decreased by 4.2 percent between 2009 and 2010.

** Confidential includes: Propane (LPG), Heavy Fuel Oil (HFO) and Middle Distillate (LFO).

The cement industry is a key player in Canada’s domestic construction industry and a large exporter that contributes substantially to the country’s economy. The industry employs more than 27 000 Canadians for the production of cement, ready mix concrete and concrete construction materials. The industry's eight cement companies operate 15 processing facilities that produced 15 million tonnes of cement in 2008. Approximately 27 percent of this production was exported to the United States.\(^1\) Cement manufacturing is energy-intensive, with energy costs accounting for approximately 40 percent of input costs in the manufacturing process. The relatively low cost of the thermal (fossil-fuel based) energy that supplies over 89 percent of its total energy needs is fundamental to the competitiveness of the industry.

ACHIEVEMENTS

The Canadian cement industry is committed to improving the social and environmental performance of its operations, and will continue to work on reducing the environmental footprint of cement. The industry’s focus is on reducing CO\(_2\) emissions and promoting the use of different types of fuels. Approximately 60 percent of greenhouse gas (GHG) emissions associated with the industry is irreducible because they are released during cement production as part of the calcination process. Innovation will be key to the viability and competitiveness of the sector.\(^2\)

\(^1\) Cement Association of Canada
\(^2\) 2010 Canadian Cement Industry Sustainability Report
The 2010 Canadian Cement Industry Benchmarking Summary Report concluded that the overall energy efficiency of the cement sector was relatively high, with a median energy efficiency index of 76 compared to a theoretical best practices plant with a value of 100. Nine of the 15 facilities achieved a “good practice rating” index of at least 75. Despite this strong performance, the study identified areas that have the potential to yield further energy efficiency improvements and cost savings for the sector. Further improvements are likely as a result of the industry’s positive response to the energy benchmarking study, the December 2008 suspension of production at Canada’s last remaining wet kilns and the anticipated modernization of another plant in the coming years. The dry process avoids the need for water evaporation and is much less energy intensive than the wet process.

St. Marys Cement’s plant in Bowmanville was the first Canadian facility to be certified CAN/CSA-ISO 50001 — Energy Management Systems Standard compliant. Important steps towards this certification included raising employee awareness of the costs of various operations and procedures, implementing training programs and establishing an energy management and conservation committee, called E=MC². With representatives from Finance, Human Resources, Environment, Quality Control, Maintenance, Mining and Production departments, the Committee identified and acted upon more than 100 separate energy efficiency initiatives. Much of the energy savings required little capital expenditure or were accomplished at no cost.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/cement.

HIGHLIGHTS

Cement Sector — NAICS 327310

Energy Intensity Index (1990–2010)

<table>
<thead>
<tr>
<th>Base Year 1990 = 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>0.90</td>
</tr>
<tr>
<td>0.80</td>
</tr>
<tr>
<td>0.70</td>
</tr>
</tbody>
</table>

The sector’s energy intensity decreased by 0.4 percent between 2009 and 2010.

Data Sources:
The Canadian chemical sector encompasses more than 2700 manufacturing locations, employing 80,000 Canadians and producing a diverse range of chemicals and chemical products. There are manufacturing sites in all provinces, with the highest concentration located in Ontario (41 percent), followed by Quebec (27 percent), British Columbia (12 percent) and Alberta (11 percent). Industry shipments in 2011 were valued at $47 billion and exports reached $31 billion, ranking chemicals 5th among all manufacturing industries in terms of shipments, and 3rd in terms of exports.

The Chemistry Industry Association of Canada is the trade association that represents the manufacturers of industrial chemicals which include petrochemicals, inorganic chemicals, specialty chemicals and synthetic resins and rubbers. These companies transform raw resources like natural gas, crude oil, minerals and metals into high value-added products that are critical inputs used by almost all other manufacturing industries. Industrial chemicals represent more than half of the overall industry, with sales of $25 billion and exports of $19 billion in 2011. Of these shipments, 75 percent were exported to foreign markets, mainly to the United States, with the next-largest shares going to the United Kingdom, China and Mexico. The industrial chemical industry employs about 15,000 Canadians at an average salary of about $83,000, which is much higher than the all-manufacturing average and reflects the highly skilled nature of the labour force.
ACHIEVEMENTS

The Chemistry Industry Association of Canada released its 19th consecutive Reducing Emissions report in March 2012. The report summarizes the overall environmental performance of its member-companies’ manufacturing operations, and documents the consistent progress that members have made in reducing their emissions since 1992 (the first year that the association began gathering emissions data). Since that time, association members have:

- Reduced releases of known and probable carcinogens by 96 percent
- Eliminated 73 percent of emissions of 13 high-priority substances targeted by Canada’s Chemicals Management Plan
- Reduced the global warming potential of their operations by 63 percent
- Decreased the ozone-depleting potential of their operations by 99 percent

For more information on the sector, visit oee.nrcan.gc.ca/industrial/chemical.

HIGHLIGHTS

Chemical Sector — NAICS 325

The total CO₂ emissions for all members from 1992 to 2010 decreased by 37 percent. However, the total CO₂ emissions for all members from 2009 to 2010 increased by 5 percent.

In terms of global warming potential, member companies’ GHG emissions (millions of tonnes of CO₂ emissions) declined by 63 percent in 2010 when compared to 1992. However, global warming potential for all members’ GHG emissions increased by 9 percent from 2009 to 2010.

There were several factors at play which resulted in this increase: increased demand for member company products, improvements in emission estimation methodologies, changes in processes and products and the addition of several new companies to CIAC membership.
CONSTRUCTION

The Canadian construction industry represents a major component of Canada’s economy. Statistics Canada data indicated that the industry provided 1.36 million direct jobs in 2010 in more than 280,000 firms, produced nearly $193 billion in goods and services and contributed about $74 billion to Canada’s GDP.¹

The construction sector is represented within CIPEC by the Canadian Construction Association (CCA), the national voice of the construction industry, with a membership of more than 17,000 across Canada. CCA members represent all segments of the industry and are responsible for the construction of industrial, commercial, institutional and civil engineering projects.

¹ Data are from Statistics Canada: CANSIM Table 383-0009 (Labour statistics), Canadian Business Patterns database (establishments), Table 379-0027 (GDP). Gross output value from Informetrica Ltd.
ACHIEVEMENTS
Since 1990, the construction industry has made considerable strides to reduce its environmental footprint and greenhouse gas emissions, while at the same time increasing its gross output by more than 60 percent. Today, many companies regularly upgrade their equipment to ensure they are using the most fuel-efficient engines available. A number of construction companies have also switched their fuel use to less harmful fuel types, and will soon be operating on B2 biodiesel across Canada. Other important innovations within the construction sector include:

- Many contractors target and obtain 50 percent recycling rates on all of their projects, which is remarkable considering virtually nothing was recycled only 20 years ago.
- New technologies and construction innovations are contributing to reduce end-use energy consumption and building emissions. Many new buildings are incorporating these design improvements to help lower their operating costs and environmental footprint.
- Certification systems are increasingly being used to test, measure and assign a rating to new construction based on its sustainability and eco-friendliness.
- Energy retrofits reduce a building’s energy use by as much as 50 percent in some cases.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/construction.

HIGHLIGHTS
Construction Sector – NAICS 23

Energy Intensity Index (1990–2010)
Base Year 1990 = 1.00

Energy intensity increased by 4.5 percent between 2009 and 2010. Based on GDP growth, energy intensity in the construction sector has fallen since 1990.

Between 2009 and 2010, total energy consumption increased by 10.48 percent while GDP increased by 5.72 percent.

Middle distillates are the preferred fuel at 63 percent, followed by natural gas at 25 percent.

While diesel emissions are up, the introduction of new Tier 4 engines in 2012 should help bring about further fuel efficiency and declines in both CO₂ and particulate emissions.

The dairy industry ranks third in the Canadian agricultural sector following grains and red meats. In 2010, dairy production in Canada generated total net farm receipts of $5.5 billion and sales of $13.7 billion, representing 15 percent of the Canadian food and beverage sector. About 81 percent of Canadian dairy farms are located in Ontario and Quebec, 13 percent in the western provinces and 6 percent in the Atlantic provinces.

The Canadian dairy cattle population totals 1.4 million and the typical Canadian dairy farm has 72 cows. There are 455 milk processing plants (including 274 federally inspected) contributing to more than 22,650 jobs across Canada. The Canadian dairy sector operates under a supply management system based on planned domestic production, administered pricing and dairy product import controls.

The Canadian dairy industry is currently developing a comprehensive strategy on environmental sustainability related to climate change, aimed at reducing greenhouse gas emissions (GHG) in an increasingly efficient Canadian dairy industry.¹

ACHIEVEMENTS

The concentrated nature of Canada’s dairy industry makes it easier to investigate and implement innovative energy efficiency options. CanmetENERGY is bringing its technical support and expertise to optimize the energy consumption of a Parmalat dairy plant in Laverlochère, Quebec. The project includes a process integration study in partnership with the plant’s staff and recommendations for a new refrigeration and heat pump system. The process integration study aims to identify the best solutions to optimize waste heat use and upgrading. Thanks to the support provided by the Bureau de l’efficacité et de l’innovation énergétiques to develop the process energy integration market in Quebec, CanmetENERGY will provide Parmalat’s staff with technical support during the study.

Another leader on energy efficiency, La Fromagerie Polyethnique in Saint-Robert, Quebec, no longer needs to heat any of its process water with a propane furnace. All thermal pumps — four dedicated to heating and cooling the facility and two to process heating and cooling — function in conjunction with heat exchangers that capture waste heat from various equipment and processes including air compressors, whey production, and preheating wash water. With its integrated technology, the company is not only saving heating costs but also diverting the equivalent of 156 tonnes of carbon dioxide annually.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/dairy.

HIGHLIGHTS

Dairy Sector — NAICS 3115

<table>
<thead>
<tr>
<th>Year</th>
<th>Terajoules</th>
<th>Million hectolitres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>10 000</td>
<td>71</td>
</tr>
<tr>
<td>2000</td>
<td>11 000</td>
<td>72</td>
</tr>
<tr>
<td>2010</td>
<td>12 000</td>
<td>78</td>
</tr>
</tbody>
</table>

Production increased by 0.09 percent and energy consumption increased by 5.52 percent between 2009 and 2010.

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>GDP — Informetrica Limited, T1 Model and National Reference Forecast, March 2012.</td>
</tr>
</tbody>
</table>

Energy intensity increased by 5.42 percent between 2009 and 2010.
The electrical and electronics sector includes a diverse array of companies that produce electrical appliances, lighting, consumer electronics, communications and electronic equipment, cabling, office equipment, industrial equipment and other electrical products. These companies operate more than 1400 facilities and employ over 130 000 workers across Canada. The sector is a major exporter and a vital, growing contributor to the national economy. It contributes more than $50 billion to Canada’s economy.¹

¹ Source: Electro-Federation Canada
ACHIEVEMENTS

The industry is committed to reducing its impact on the environment through energy-efficient processes and practices. General Dynamics Canada, located in Ottawa, Ontario, is a sector leader on energy efficiency. The General Dynamics Advanced Information Systems Energy Team is executing a plan that is driving energy efficiency through all levels of the organization. Notable advances include:

- The company restructured its portfolio from more than 70 offices to just over 50 offices around the country today, totalling over 3 million square feet. Effective use of real estate space is critical to conserving energy.
- Thanks to energy-saving initiatives, General Dynamics experienced its lowest level of energy consumption in three years.
- The energy team is also working on converting from desktops to laptops and from CRT monitors to LCD monitors, both of which contribute to energy conservation.
- General Dynamics’ manufacturing plant is registered to the ISO 14001 and OHSAS 18001 standards. As part of this registration, the affected buildings establish environmental impact objectives and targets each year.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/electricalandelectronics.

HIGHLIGHTS

Electrical and Electronics Sector — NAICS 334 and 335

Energy Intensity Index (1990–2010)
Base Year 1990 = 1.00

Energy intensity increased by 5.20 percent between 2009 and 2010.

Total energy consumption increased by 10.59 percent while total production (GDP) increased by 5.13 percent between 2009 and 2010.

Energy Sources in Terajoules per Year (TJ/yr)

** Confidential includes: Middle Distillates (LFO), Propane (LPG) and Wood Waste.

Electricity is a major driver of the Canadian economy and a fundamental requirement for the prosperity and quality of life of all Canadians. From health services to communication requirements, Canadians depend on reliable, cost-effective electricity. Canadian Electricity Association (CEA) members strive to provide this essential service as reliably as possible, but appropriate conditions for investment will be essential in the years ahead to ensure continued system reliability. While CEA members work toward delivering on this key mandate, they also contribute to the economy in many other ways, including employee compensation, payments to investors and governments, donations to local charities, and other long-term community investments.

Association members generate, transmit and distribute electrical energy to industrial, commercial, residential and institutional customers across Canada every day. From vertically integrated electric utilities, to power marketers, to the manufacturers and suppliers of materials, technology and services that keep the industry running smoothly — all are represented by this national industry association.
ACHIEVEMENTS

Sustainable Electricity is an industry-wide sustainability program developed and implemented by the electric utility members (generation, transmission and distribution) of the Canadian Electricity Association. Participation in Sustainable Electricity is a condition of membership. The third Sustainable Electricity Annual Report, released in June 2011, outlined the environmental, social and economic performance of its member companies in 2010 and highlighted a variety of energy efficiency projects.

Hydro One initiated lighting and heating, ventilation and air conditioning (HVAC) retrofit projects at ten of its service centres and related facilities. The 14 400 square metre Central Maintenance Services facility in Pickering underwent a complete lighting retrofit. This resulted in an initial reduction of more than 230 000 kilowatt hours (kWh) per year.

Maritime Electric introduced an LED Holiday Lighting Rebate Program for its residential customers. More than 6400 customers participated in the program, resulting in 110 000 kWh of annual energy savings and the achievement of 71 kilowatts of savings in peak demand for electricity.

Hydro Ottawa presented the University of Ottawa with $136,000 for its participation in the Electricity Retrofit Incentive Program. The upgraded cooling plant at the University will reduce electricity consumption by 25 percent.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/e.generation.

HIGHLIGHTS

Electricity Generation Sector — NAICS 22111

Energy intensity decreased by 2.65 percent and electricity generation decreased by 0.55 percent between 2009 and 2010.

GHG intensity from fossil generation decreased by 5.01 percent between 2009 and 2010. GHG intensity for total generation decreased by 0.53 percent between 2009 and 2010. Total GHG emission decreased by 0.67 percent between 2009 and 2010.

Data Source: Energy Use — Canadian Industrial Energy End-Use Data and Analysis Centre (CIEEDAC), Simon Fraser University. February 2012.
Canada supplies approximately 12 percent of the world’s fertilizer materials, and our fertilizer industry plays an essential role in ensuring that world food needs can be met economically and sustainably. Canada is the world’s largest exporter of potash and elemental sulphur. In addition, the industry contributes more than $12 billion annually to the Canadian economy.

ACHIEVEMENTS

Canadian Fertilizer Institute (CFI) member companies have made significant investments over the years to improve manufacturing energy efficiency and to reduce air emissions. The CFI works diligently to ensure that its voluntary efforts to improve energy efficiency and reduce emissions are recognized by the federal and provincial governments.

Energy efficiency initiatives are driven in part by the Institute’s drive to comply with the Nitrous Oxide Emissions Reduction Protocol (NERP). A web-based seminar called a NERPinar was held on March 29, 2012 and focused on past NERP-related accomplishments, present applications, and future innovations. A strong emphasis was placed on the scientific rigour and technical feasibility of the 4R NERP. The goal of the NERPinar was to demonstrate the comprehensive suite of benefits achieved by implementing NERP practices and procedures and it provided a compelling business case.

For more information on the sector, visit eee.nrcan.gc.ca/industrial/fertilizer.
HIGHLIGHTS

Fertilizer Sector (Nitrogenous) — NAICS 325313

<table>
<thead>
<tr>
<th>Year</th>
<th>Production (million tonnes)</th>
<th>Total Energy (Terajoules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>40 000</td>
<td>55 000</td>
</tr>
<tr>
<td>1995</td>
<td>45 000</td>
<td>60 000</td>
</tr>
<tr>
<td>1996</td>
<td>50 000</td>
<td>65 000</td>
</tr>
<tr>
<td>1997</td>
<td>55 000</td>
<td>70 000</td>
</tr>
<tr>
<td>1998</td>
<td>60 000</td>
<td>75 000</td>
</tr>
<tr>
<td>1999</td>
<td>65 000</td>
<td>80 000</td>
</tr>
<tr>
<td>2000</td>
<td>70 000</td>
<td>85 000</td>
</tr>
<tr>
<td>2001</td>
<td>75 000</td>
<td>90 000</td>
</tr>
<tr>
<td>2002</td>
<td>80 000</td>
<td>95 000</td>
</tr>
<tr>
<td>2003</td>
<td>85 000</td>
<td>100 000</td>
</tr>
<tr>
<td>2004</td>
<td>90 000</td>
<td>105 000</td>
</tr>
<tr>
<td>2005</td>
<td>95 000</td>
<td>110 000</td>
</tr>
<tr>
<td>2006</td>
<td>100 000</td>
<td>115 000</td>
</tr>
<tr>
<td>2007</td>
<td>105 000</td>
<td>120 000</td>
</tr>
<tr>
<td>2008</td>
<td>110 000</td>
<td>125 000</td>
</tr>
<tr>
<td>2009</td>
<td>115 000</td>
<td>130 000</td>
</tr>
<tr>
<td>2010</td>
<td>120 000</td>
<td>135 000</td>
</tr>
</tbody>
</table>

Between 2009 and 2010, production decreased by 2.52 percent while energy consumption increased by 18 percent.

Energy Sources Terajoules per Year (TJ/yr)

* Other Fuel includes: Electricity, Middle Distillates (LFO) and Propane (LPG).
** Confidential includes: Heavy Fuel Oil (HFO) and Steam.

Natural gas consumption increased by 17.6 percent between 2009 and 2010.

Data Sources:

Fertilizer Sector (Potash) — NAICS 212396

<table>
<thead>
<tr>
<th>Year</th>
<th>Production (million tonnes)</th>
<th>Total Energy (Terajoules)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>15 000</td>
<td>21 000</td>
</tr>
<tr>
<td>1995</td>
<td>17 000</td>
<td>23 000</td>
</tr>
<tr>
<td>1996</td>
<td>19 000</td>
<td>25 000</td>
</tr>
<tr>
<td>1997</td>
<td>21 000</td>
<td>27 000</td>
</tr>
<tr>
<td>1998</td>
<td>23 000</td>
<td>29 000</td>
</tr>
<tr>
<td>1999</td>
<td>25 000</td>
<td>31 000</td>
</tr>
<tr>
<td>2000</td>
<td>27 000</td>
<td>33 000</td>
</tr>
<tr>
<td>2001</td>
<td>29 000</td>
<td>35 000</td>
</tr>
<tr>
<td>2002</td>
<td>31 000</td>
<td>37 000</td>
</tr>
<tr>
<td>2003</td>
<td>33 000</td>
<td>39 000</td>
</tr>
<tr>
<td>2004</td>
<td>35 000</td>
<td>41 000</td>
</tr>
<tr>
<td>2005</td>
<td>37 000</td>
<td>43 000</td>
</tr>
<tr>
<td>2006</td>
<td>39 000</td>
<td>45 000</td>
</tr>
<tr>
<td>2007</td>
<td>41 000</td>
<td>47 000</td>
</tr>
<tr>
<td>2008</td>
<td>43 000</td>
<td>49 000</td>
</tr>
<tr>
<td>2009</td>
<td>45 000</td>
<td>51 000</td>
</tr>
<tr>
<td>2010</td>
<td>47 000</td>
<td>53 000</td>
</tr>
</tbody>
</table>

Production increased by 31.7 percent while energy consumption increased by 28.7 percent between 2009 and 2010.

Energy Sources Terajoules per Year (TJ/yr)

Between 2009 and 2010, natural gas consumption increased by 25.9 percent while electricity consumption increased by 32 percent.

Data Sources:
- Energy Use — *Canadian Industrial Energy End-Use Data and Analysis Centre (CIEEDAC)*, Simon Fraser University, February 2012.
FOOD AND BEVERAGE

Canada’s food and beverage sector includes manufacturers who produce meat, poultry, fish, fruit and vegetables, flour and bakery products, oils and sugars, coffee, snack foods, soft drinks and confectionery. It is the second largest manufacturing industry in Canada after transportation equipment.

ACHIEVEMENTS

The food-processing industry is not considered energy intensive by other industrial/processing standards. However, it still represents a significant cost of business and there are opportunities to be more energy efficient. One example is biodiesel, the refining of vegetable oil to make it run as efficiently as biodiesel fuel. It burns cleaner and completely, and emits significantly less sulphur, carbon monoxide and particulate than conventional fossil fuels. Biodiesel is also more environmentally sound. If it happens to leak or spill, it can be neutralized without the detergents needed for conventional fuels because it readily breaks down.

Additionally, food and beverage companies are finding and implementing many cost-effective solutions to reduce energy use and generate important energy cost savings. The following are successful CIPEC Leader projects:

- Over 619 food and beverage employees have attended a customized NRCan Dollars to Sense Energy Management workshop tailored for the specific facility.
- Between 2005 (base year) and 2011, Mondelez Canada Inc., formerly Kraft Foods achieved some aggressive sustainability goals, including a 25 percent reduction in both manufacturing-related energy consumption and energy-related CO₂ emissions from manufacturing.
• Cargill Foods’ goal is to improve energy efficiency by 5 percent over their fiscal year 2010 baseline by 2015. The company made strong progress toward this goal during 2011 with an improvement in energy efficiency of more than 3 percent over this same baseline.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/foodandbeverage.

HIGHLIGHTS

Food and Beverage Sector — NAICS 3121

Energy Intensity Index (1990–2010)

Base Year 1990 = 1.00

<table>
<thead>
<tr>
<th>Year</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1.00</td>
</tr>
<tr>
<td>1995</td>
<td>0.97</td>
</tr>
<tr>
<td>2000</td>
<td>0.94</td>
</tr>
<tr>
<td>2005</td>
<td>0.92</td>
</tr>
<tr>
<td>2010</td>
<td>0.89</td>
</tr>
</tbody>
</table>

The sector’s energy intensity increased by 2.1 percent between 2009 and 2010.

<table>
<thead>
<tr>
<th>Year</th>
<th>Terajoules</th>
<th>Billion $ ‘02 GDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>70 000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>80 000</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>90 000</td>
<td>20</td>
</tr>
</tbody>
</table>

The GDP increased by 0.6 percent while energy consumption increased by 2.7 percent between 2009 and 2010.

Natural gas consumption increased by 3.2 percent and electricity consumption decreased by 10.7 percent between 2009 and 2010.

** Confidential includes: Heavy Fuel Oil (HFO), Middle Distillates (LFO), Propane (LPG), Wood Waste and Steam.**

Data Sources:
The Canadian foundry industry is comprised of more than 150 small, medium and large facilities that produce metal castings. Molten metal is poured into forms made of sand or metal and allowed to cool. The resulting castings are then used in a myriad of industries and industry specialty markets, including forestry, mining, automotive, construction, pulp and paper, heavy industrial machinery and equipment, aircraft and aerospace, petroleum and petrochemical, agricultural, municipal and defence sectors. The raw material used in this industry is typically recycled metal. The industry employed about 8000 people in 2009, down from about 19 660 in 2000.¹

¹ Canadian Industry Statistics — Employment Foundries NAICS 3315. Industry Canada
ACHIEVEMENTS
The Energy Benchmarking Study for Canadian Foundries published by the Canadian Foundry Association in March 2011 speaks directly to the progress this sector is making on energy efficiency. The study shows:

• Typical energy benchmarks for each foundry operation, on a per tonne basis.
• Benchmarks for each metal type for the entire foundry on a per tonne basis.
• That participants can gauge their performance against their peers on a total foundry basis and on a department-by-department basis.
• Dozens of practical energy improvement ideas that have been successfully accomplished by peer foundries and could be launched by any interested foundry.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/foundry.

HIGHLIGHTS

Foundry Sector — NAICS 3315

The energy intensity decreased by 9.2 percent between 2009 and 2010.

The GDP increased by 9 percent and energy consumption decreased by 1.1 percent between 2009 and 2010.

Production — Informetrica Limited, T1 Model and National Reference Forecast, March 2012.
Ontario and Quebec have sizable manufacturing sectors, and there is a strong sectoral presence in the Atlantic provinces, the Prairies and the west coast region of Canada. The general manufacturing sector includes a variety of industries not otherwise covered in the sector descriptions of this report, including leather, clothing, furniture, printing activities, glass and glass products, adhesives, tobacco products and pharmaceuticals, as well as construction materials like floor coverings and insulation. The sector also includes rubber products, textiles and wood products like furniture, kitchen cabinets, containers and pallets.

More than 1.8 million Canadians are employed in manufacturing — about 15 percent of the Canadian workforce. Manufacturing accounts for 12 percent of the total Canadian gross domestic product.¹

¹ Source: Canadian Manufacturers and Exporters
ACHIEVEMENTS

A stable, secure supply of energy at the lowest possible cost is essential to manufacturers. Energy costs can constitute up to 30 percent or more of total plant expenditures. Deregulation has left many electricity and natural gas business consumers at the mercy of price increases and decreases, uncertain as to where to turn for energy expertise. Considering the high cost, uncertainty and the need to reduce greenhouse gas emissions, it is important for manufacturers to be as energy efficient as possible.

The Quinte Manufacturing Sustainability Network Group (SNG) in eastern Ontario holds monthly meetings, each focusing on a different sustainability theme. Past themes have included lighting retrofits, creating a company culture of sustainability and using a metric to establish energy, water and waste baseline and targets. Ideas for future meetings include tours of solar-powered facilities and exploring the application of the recently published ISO 50001 Energy Management Systems Standard to increase efficiency.

The CIPEC General Manufacturing Sector Task Force in New Brunswick focuses on a collaborative approach. For members who have challenges in implementing energy management, the Task Force offers proven business cases and access to practical information. An energy management information system (EMIS) is an example of an innovative solution that is emerging in New Brunswick.

CIPEC Leaders in the rubber industry have implemented some energy-saving projects. For example, AirBoss Rubber Compounding made major strides over the past few years minimizing the waste they send to landfill. They achieved a 92 percent recycling target in 2009 and set a target of 95 percent for 2010. Cooper-Standard Automotive continually searches for ways to help improve a vehicle’s overall carbon footprint. They supply products that help reduce greenhouse gas emissions, increase recyclability and improve a vehicle’s fuel economy. In addition to improving vehicles, Cooper Standard actively explores and implements new ways to enhance its manufacturing processes, enabling increased recyclability and reducing company emissions.

The Textiles Human Resources Council conducted an 18-month initiative on green manufacturing and technical textiles which led to a number of achievements.

Perhaps the most significant was the Eco-Innovation and Sustainable Manufacturing Program. Through a combination of webinars, online training programs and eco-innovation workshops centered on topics such as eco-design best practices and life-cycle analysis, the Eco-innovation and Sustainable Manufacturing program promotes the acquisition and development of key knowledge and skills necessary for the successful implementation of sustainable manufacturing initiatives. Developed and delivered in partnership with the Institute for Product Development (IDP), Ellipsos inc., and the National Research Council of Canada (NRC), this program offers participants the opportunity to network and collaborate with industry peers and leading sustainable development experts as they conceive and develop an eco-innovation project for implementation within their workplaces.¹

The wood products industry, for their part, continued to push the energy efficiency envelope this year. Over the past decade, Canada’s forest products industry has invested over $8 billion in facility upgrades and innovative processes in a continued effort to improve its environmental performance.

Two CIPEC sector members, Flakeboard Company Ltd. and Groupe Savoie, were awarded CIPEC Leadership Monitoring and Tracking awards in 2011.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/generalmanufacturing.

HIGHLIGHTS

<table>
<thead>
<tr>
<th>General Manufacturing Sector — NAICS***</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** NAICS Category Name</td>
</tr>
<tr>
<td>Textiles</td>
</tr>
<tr>
<td>Clothing and Manufacturing</td>
</tr>
<tr>
<td>Leather and Allied Product</td>
</tr>
<tr>
<td>Wood Products</td>
</tr>
<tr>
<td>Rubber Products</td>
</tr>
<tr>
<td>Printed and Related Support Activities</td>
</tr>
<tr>
<td>Fabricated Metal Product</td>
</tr>
<tr>
<td>Machinery</td>
</tr>
<tr>
<td>Furniture and Related Product</td>
</tr>
<tr>
<td>Miscellaneous Manufacturing</td>
</tr>
<tr>
<td>Tobacco Product Manufacturing</td>
</tr>
<tr>
<td>Converted Paper Product Manufacturing</td>
</tr>
<tr>
<td>Non-metallic Mineral Product not Elsewhere Classified</td>
</tr>
<tr>
<td>Chemical Manufacturing not Elsewhere Classified</td>
</tr>
</tbody>
</table>

¹ Source: Textiles Human Resources Council
The reopening of facilities had an impact on the energy intensity of the sector. It lowered the capacity utilization rate and increased the energy intensity by 4.2 percent over the 2009 level.

Due to improvement in the economic environment, the energy consumption in the general manufacturing sector increased by 10.3 percent from 2009 to 2010. This is mostly attributable to the reopening of industrial facilities that had been closed during the economic crisis. 2010 energy consumption is 4.8 percent below the 2008 level.

LIME

Canada’s merchant lime sector supplies essential raw materials for the steel and mining industry, the pulp and paper industry, water treatment, environmental management and other basic industries. It manufactures quicklime, hydrated lime and dead burned dolomite by crushing, screening and roasting limestone, dolomite shells or other sources of calcium carbonate. The Canadian Lime Institute represents all merchant lime manufacturers in Canada. The sector’s four companies operate 17 facilities and employ over 750 people.
ACHIEVEMENTS

The industry’s heavy dependence on fuel makes energy efficiency a top priority and a major challenge. Although incremental improvements are continually made to existing manufacturing equipment, large-scale gains require substantial capital investments in new, more efficient kiln installations. Unfortunately, excess capacity and low capital turnover within the industry limit the ability of lime manufacturers to make such investments.

However, despite these challenges there were a number of energy efficiency highlights to report from the year.

Carmeuse, with locations in Blind River, Dundas and Ingersoll, Ontario, uses natural resources such as stone, energy, and water in its production and uses the most efficient processes to avoid waste. Carmeuse is deeply involved in the reduction of emissions and improving its fuel efficiency.

Graymont, with locations in Havelock, New Brunswick, Bedford, Quebec, and Calgary, Alberta, is committed to protection of the environment, whether through the use of their products for environmental remediation or by controlling the impact of their operations on the environment. For example, plant emissions are sent through baghouses or scrubbers to meet air quality emissions standards.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/lime.

HIGHLIGHTS

Lime Sector — NAICS 327410

Energy intensity in the sector decreased by 4.4 percent between 2009 and 2010.

Total energy consumption increased by 8 percent and total production increased by 13 percent between 2009 and 2010.

Confidential includes: HFO (Heavy Fuel Oil), LFO (Middle Distillates), LPG (Propane), Coal Coke, Petroleum Coke, Coal, Electricity and Natural Gas.

Mining is one of Canada’s most important economic sectors and is a major contributor to our country’s prosperity. In 2011, the industry contributed $36 billion to our gross domestic product (GDP) and employed 320 000 workers in the mineral extraction, processing and manufacturing sectors. This industry stimulates and supports economic growth both in large urban centres and in remote rural communities, including numerous First Nations communities; mining is a major employer of Aboriginal Canadians.

Mining accounts for 21 percent of Canadian goods exports. The industry also generates considerable economic spin-off activity: There are over 3200 companies that provide the industry with services ranging from engineering consulting to drilling equipment.¹

¹ F&F 2011 — Facts and Figures of the Canadian Mining Industry, The Mining Association of Canada
ACHIEVEMENTS

The Green Mining Initiative (GMI) represents a change in paradigm for the mining industry in the sense that ways to minimize impacts on the environment are put in place at the front end of mine project development. The intent of the initiative, officially launched in May 2009, is “to minimize industry’s footprint, to support innovation in mining and to raise the profile of proactive measures that companies are already taking.”

Led by NRCan, the GMI is a multi-stakeholder initiative with collaboration and funding opportunities. Participants include mining companies, mining equipment manufacturers, all levels of government, regulators, academia and non-governmental organizations.

Focused on four research and innovation themes, the GMI is a comprehensive program that seeks to move the Canadian mining industry into a leadership position in the development and adoption of green technologies, both nationally and internationally.

The ecoENERGY Efficiency for Industry program aligns with the GMI by offering Dollars to $ense customized workshops at remote mine sites, and by making financial incentives available for process integration and computational fluid dynamics studies as well as the implementation of ISO 50001.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/mining.

HIGHLIGHTS

Metal Mining Sector – NAICS 2122

<table>
<thead>
<tr>
<th>Year</th>
<th>Natural Gas</th>
<th>Electricity</th>
<th>Coal</th>
<th>Coal Coke</th>
<th>Heavy Fuel Oil</th>
<th>Middle Distillates</th>
<th>Propane</th>
<th>Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Electricity consumption increased by 6.6 percent, heavy fuel oil consumption increased by 20.1 percent and middle distillates consumption increased by 15.7 percent between 2009 and 2010.

Data source: Energy Use – Canadian Industrial Energy End-Use Data and Analysis Centre (CIEEDAC), Simon Fraser University, January 2012.
Alberta’s oil sands are the third-largest proven crude oil reserve in the world, next to Saudi Arabia and Venezuela. Through responsible development, advancement of technology and significant investment, the Government of Alberta is working in conjunction with industry to enhance Alberta’s role as a world-leading energy supplier. New projects are being added every year and production is expected to increase from 1.31 million barrels per day in 2008 to 3 million barrels per day in 2018, keeping pace with demand and providing a sound economic basis for the future.¹

¹ Source: Government of Alberta — Oil Sands
ACHIEVEMENTS

The oil sands industry is actively working toward more energy efficiency in order to support priority actions on environmental stewardship.

• Explore common methodologies to evaluate the economic, social, and environmental impacts of oil sands development.
• Revise the current environmental impact assessment process to support cumulative effects management.
• Create economic, social, and environmental performance measures and report progress regularly.
• Continue to commit to carbon capture and storage projects to reduce the impacts of industrial greenhouse gas emissions.2

For more information on the sector, visit oee.nrcan.gc.ca/industrial/oilsands.

HIGHLIGHTS

Oil Sands Sector — NAICS 211114

The energy intensity in the sector decreased by 2.97 percent between 2009 and 2010.

Natural gas consumption decreased by 9.13 percent and process gas increased by 12.04 percent between 2009 and 2010.

Data Source: Alberta Energy and Utilities Board 2010.
Canada’s petroleum products sector manufactures and markets the fuels that drive the Canadian economy. From transportation fuels, to heating oil, chemicals and asphalt, its products are present in many aspects of Canadian daily activities. The petroleum sector contributes $2.5 billion to Canada’s GDP and employs 17,500 professional, highly-educated refinery workers. There are 19 refineries in eight Canadian provinces with an aggregate production capacity of about two million barrels per day (bpd). To round out the value chain, there are 70 distribution terminals and some 12,000 retail sites across Canada that employ 82,000 workers.¹

ACHIEVEMENTS
The Canadian Fuels Association is an association of major Canadian companies involved in the refining, distribution, and/or marketing of petroleum products. Canada is home to one of the world’s most efficient refining industries, processing 2 million barrels every day.

Canadian Refineries have reduced CO₂ emissions by implementing energy-efficient refining processes and practices throughout their facilities. Energy efficiency of oil refineries has improved by over 1 percent each year, aiding in an overall reduction of greenhouse gas emissions.

¹ Source: Canada’s Downstream Petroleum Industry, Canadian Fuels Association
To achieve these results, the industry has taken wide-ranging measures to recover residual energy and focus increasingly on energy and operational reliability issues. As a result, the total energy consumption of the sector in 2010 was 1.6 percent below the 1990 level, despite the implementation of numerous energy-intensive processes to remove sulphur from its products, in order to improve the environment.

For more information on the sector, visit oce.nrcan.gc.ca/industrial/petroleumproducts.

HIGHLIGHTS

Petroleum Products Sector — NAICS 324110

Energy Intensity Index (1990–2010)

<table>
<thead>
<tr>
<th>Year</th>
<th>Energy Intensity GJ/$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1.00</td>
</tr>
<tr>
<td>1991</td>
<td>1.05</td>
</tr>
<tr>
<td>1992</td>
<td>1.05</td>
</tr>
<tr>
<td>1993</td>
<td>1.05</td>
</tr>
<tr>
<td>1994</td>
<td>1.05</td>
</tr>
<tr>
<td>1995</td>
<td>1.05</td>
</tr>
<tr>
<td>1996</td>
<td>1.05</td>
</tr>
<tr>
<td>1997</td>
<td>1.05</td>
</tr>
<tr>
<td>1998</td>
<td>1.05</td>
</tr>
<tr>
<td>1999</td>
<td>1.05</td>
</tr>
<tr>
<td>2000</td>
<td>1.05</td>
</tr>
<tr>
<td>2001</td>
<td>1.05</td>
</tr>
<tr>
<td>2002</td>
<td>1.05</td>
</tr>
<tr>
<td>2003</td>
<td>1.05</td>
</tr>
<tr>
<td>2004</td>
<td>1.05</td>
</tr>
<tr>
<td>2005</td>
<td>1.05</td>
</tr>
<tr>
<td>2006</td>
<td>1.05</td>
</tr>
<tr>
<td>2007</td>
<td>1.05</td>
</tr>
<tr>
<td>2008</td>
<td>1.05</td>
</tr>
<tr>
<td>2009</td>
<td>1.05</td>
</tr>
<tr>
<td>2010</td>
<td>0.95</td>
</tr>
</tbody>
</table>

The energy intensity of the sector improved by 12.23 percent in 2010 (1.39 in 2009 and 1.22 in 2010 — a 12.23 percent decrease), as a result of reduced energy use, increased production and GDP.

Energy Sources in Terajoules per Year (TJ/yr) (LHV)

<table>
<thead>
<tr>
<th>Source</th>
<th>1990</th>
<th>2000</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>230</td>
<td>250</td>
<td>270</td>
</tr>
<tr>
<td>Coke</td>
<td>250</td>
<td>270</td>
<td>290</td>
</tr>
<tr>
<td>Middle Distillates (LFO)</td>
<td>270</td>
<td>290</td>
<td>310</td>
</tr>
<tr>
<td>Heavy Fuel Oil</td>
<td>290</td>
<td>310</td>
<td>330</td>
</tr>
<tr>
<td>Butane Liquids</td>
<td>310</td>
<td>330</td>
<td>350</td>
</tr>
<tr>
<td>Re-Refinery Fuel Gas</td>
<td>330</td>
<td>350</td>
<td>370</td>
</tr>
<tr>
<td>Confidential*</td>
<td>350</td>
<td>370</td>
<td>390</td>
</tr>
</tbody>
</table>

* Confidential includes: Butane, Coke, Middle Distillates (LFO), Propane (LPG) and Steam.

In 2010, refinery fuel gas represented 53 percent of energy used, followed by natural gas (16 percent), coke and liquid fuels. Improvement in use of available energy sources such as refinery fuel gases, natural gas contributes to lowering the overall intensity of refining. Other improvements include fugitive release recovery, leak repairs, energy audits, EMIS and ISO 50001 implementations and electricity use replaced by cogeneration in some refineries.

Total Energy and GDP (1990–2010)

<table>
<thead>
<tr>
<th>Year</th>
<th>Petajoules (LHV)</th>
<th>Billion $ '02</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>230</td>
<td>2</td>
</tr>
<tr>
<td>1991</td>
<td>250</td>
<td>3</td>
</tr>
<tr>
<td>1992</td>
<td>270</td>
<td>4</td>
</tr>
<tr>
<td>1993</td>
<td>290</td>
<td>5</td>
</tr>
<tr>
<td>1994</td>
<td>310</td>
<td>6</td>
</tr>
<tr>
<td>1995</td>
<td>330</td>
<td>7</td>
</tr>
<tr>
<td>1996</td>
<td>350</td>
<td>8</td>
</tr>
<tr>
<td>1997</td>
<td>370</td>
<td>9</td>
</tr>
<tr>
<td>1998</td>
<td>390</td>
<td>10</td>
</tr>
<tr>
<td>1999</td>
<td>410</td>
<td>11</td>
</tr>
<tr>
<td>2000</td>
<td>430</td>
<td>12</td>
</tr>
<tr>
<td>2001</td>
<td>450</td>
<td>13</td>
</tr>
<tr>
<td>2002</td>
<td>470</td>
<td>14</td>
</tr>
<tr>
<td>2003</td>
<td>490</td>
<td>15</td>
</tr>
<tr>
<td>2004</td>
<td>510</td>
<td>16</td>
</tr>
<tr>
<td>2005</td>
<td>530</td>
<td>17</td>
</tr>
<tr>
<td>2006</td>
<td>550</td>
<td>18</td>
</tr>
<tr>
<td>2007</td>
<td>570</td>
<td>19</td>
</tr>
<tr>
<td>2008</td>
<td>590</td>
<td>20</td>
</tr>
<tr>
<td>2009</td>
<td>610</td>
<td>21</td>
</tr>
<tr>
<td>2010</td>
<td>630</td>
<td>22</td>
</tr>
</tbody>
</table>

Energy consumption of the sector fell approximately 10 percent compared to 2009 and is now 1.6 percent below the 1990 level. Total CO₂ emissions are 5 percent below 1990, following a 2 percent decline in 2010 over 2009.

The Canadian Plastics Industry Association (CPIA) is the voice of the Canadian Plastics Industry. With almost 3200 companies employing 91,530 workers, Canada’s $26.3 billion plastics industry is a sophisticated, multi-faceted sector encompassing plastic product manufacturing, machinery, moulds, and resins.¹

The CPIA is a dynamic, member-driven organization dedicated to the growth of plastics businesses and helping the industry reach its full potential. It is an advocacy association, and it speaks with one powerful voice. Its three priorities are:

Just the facts: The CPIA prides itself on communicating the facts behind plastics manufacturing and use — from the material’s economical, social and environmental contributions to the size and strength of the Canadian manufacturing sector.

Second lives: The CPIA is committed to increasing the amount of plastic and the different types of plastic waste being diverted from landfill through the use of various waste management options, such as reuse, recycle and energy recovery.

New opportunities: The CPIA remains committed to building upon the industry’s long history of innovation and achievement by taking advantage of new opportunities and meeting industry challenges as they arise.

¹ Statistics Canada, June 2011
ACHIEVEMENTS

The plastics industry is focused on energy recovery because approximately 13 percent of plastics packaging waste in Canada is considered unsuitable for recycling. Plastics are high-value captured energy. Many people often confuse energy recovery with the old-fashioned incinerators of 50 years ago. The rudimentary incineration that was practiced from 1910 to the 1950s was not a form of energy recovery — it was simply an attempt to reduce the amount of waste going to landfill.

Today’s energy recovery technologies “transform” the inherent value of municipal waste into renewable energy. There are several different types of technologies currently available, but all use sophisticated pollution control technologies to ensure that emissions meet strict government air quality control standards.

Through energy recovery, approximately one tonne of waste can produce the equivalent of 550 net kilowatt hours of energy. A typical energy recovery facility can process approximately 2000 tonnes of waste per day, which can generate about 50 net megawatts of electricity. This is enough to power about 60 000 homes.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/plastics.

HIGHLIGHTS

Plastics Sector — NAICS 3261

![Energy Intensity Index (1990–2010)]

Base Year 1990 = 1.00

The sector’s energy intensity decreased by 2 percent between 2009 and 2010.

![Total Energy and Economic Output (1990–2010)]

GDP increased by 9.3 percent while energy consumption increased by 7.1 percent between 2009 and 2010.

![Energy Sources in Terajoules per Year (TJ/yr)]

Between 2009 and 2010, natural gas consumption increased by 18.9 percent.

** Confidential includes: Heavy Fuel Oil (HFO), Middle Distillates (LFO), Propane (LPG) and Steam.

Although Canadian pulp is renowned and preferred by many for its high-quality, long fibre length, eucalyptus-producing nations continue their scientific research to try to extend the length of their pulp. In the coming decades, the competitive advantages that the pulp industry currently holds may no longer be found exclusively in Canadian products.

As for the paper sector, the advancement in electronic communication and the arrival of handheld tablet computers will continue to lower the consumption of paper products, particularly newsprint, and even printing and writing papers to some degree. While this reduction is predicted in developed nations, opportunities might be possible in developing countries. On the other hand, other paper products such as wrapping and packaging papers, and household and sanitary paper products are in battle with substitute products made with non-wood fibre — in addition to offshore competition.

The provinces of Quebec and Ontario continue to account for more than half of the nation’s pulp and paper exports. While sales by the two eastern provinces remained unchanged in 2010, products shipped from British Columbia recovered by 16 percent to settle at $4.04 billion. It is worth mentioning that eastern Canada is responsible for producing paper products, while western Canada is known for its pulp production. As a whole, Canada’s sales of pulp and paper products recovered by 6.7 percent in 2010 to $17.3 billion.
ACHIEVEMENTS

The Pulp and Paper Technical Association of Canada (PAPTAC) operates an Energy Cost Saving Community. It consists mainly of mill employees involved with energy management, researchers, electricity and natural gas company representatives and consultants. It operates in a very open manner and membership is acquired by participation. At any time, the membership of the group consists of PAPTAC members who have attended any of the prior three community activities and/or demonstrate active participation.

Goals

• To exchange practical and technical energy efficiency information
• To promote the application of better energy technologies and practices
• To organize sessions for the Pulp and Paper Technical Association of Canada Annual Meeting (PaperWeek Canada)

In addition, three CIPEC sector members were awarded CIPEC Leadership awards in 2011: Cascades GIE Inc., who won the Integrated Energy Efficiency Strategy award, Irving Paper Limited, who received the Employee Awareness and Training award, and Kruger Products L.P., who won the Process and Technology Improvements award.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/pulpandpaper.

HIGHLIGHTS

Pulp and Paper Sector — NAICS 3221

Energy Intensity Index (1990–2010)

Base Year 1990 = 1.00

Energy intensity increased by 3.3 percent between 2009 and 2010. Continued production curtailment (e.g. extended shutdown) and an increase in self-generation of electricity were a contributing factor to the energy intensity increase.

Total energy consumption increased by 15.8 percent while total production increased by 12.2 percent between 2009 and 2010.

Use of oil and coal continues to decline while the use of biomass and renewables continues to increase.

** Other includes: Coal, Middle Distillates (LFO), Diesel, Propane (LPG), other purchased energy and other self-generated energy.

With $12 to $14 billion in annual sales, Canada’s steel industry is at the root of the Canadian industrial tree, providing the key material for many industries including automotive, construction, energy, packaging and advanced manufacturing. Steel is also an important customer for many other industries, including raw materials and transportation.¹

There are two major ways to produce steel in Canada: the basic oxygen furnace (BOF) process and the electric arc furnace (EAF) process. These two processes have different energy profiles. The BOF process uses raw materials (notably iron ore and coal), combined with 25 to 35 percent recycled steel to make new steel. The EAF process uses almost 100 percent recycled steel to make new steel. Both processes produce different products for a wide spectrum of applications. While the steel industry maximizes its consumption of available recycled steel to make new steel, additional demand for steel products cannot be fully met through finite scrap steel supplies. In 2010, Canadian steel producers recycled 7 million tonnes of steel.

¹ Canadian Steel Producers Association — Steel Facts
ACHIEVEMENTS

Members of the Canadian Steel Producers Association (CSPA) strive for continual environmental improvement in every phase of steel production. Energy efficiency plays a key role in these efforts.

In 2010, the steel industry was recovering from the global economic crisis that began in late 2008. In 2010, the production levels of steel plants in Canada were improving from the historically low levels experienced in 2009, but were still lower than in 2007 and 2008. As a result, the steel industry's 2010 energy performance improved from the previous year, returning back towards 2008 levels.

In 2010, energy conservation and efficiency achievements by CSPA member companies included:

- The first full year of operations of a 70 MW cogeneration facility at Essar Steel Algoma, where by-product gas from the integrated steel plant is used to generate electricity. This is the first cogeneration plant to be constructed at a steel plant in Canada. The facility reduces Essar Steel Algoma’s reliance on the provincial power grid by 50 percent on average, freeing up this capacity for the rest of Ontario.
- Development of energy management programs at several CSPA member companies, such as:
 - Energy management information systems (EMIS)
 - Energy monitoring and targeting programs to enhance energy “visibility” for engineers and plant operators

These energy management tools are assisting facilities and management to make decisions that will improve the energy performance of plant operations, thus reducing energy costs.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/steel.

HIGHLIGHTS

Steel Sector — NAICS 331100

Steel product shipments increased by 44.2 percent in 2010 compared to 2009 while energy intensity decreased by 21.1 percent within the same time frame. The most significant factor affecting these changes was the gradual recovery of steel production levels from the global economic crisis.

Natural gas consumption increased by 3 percent, electricity consumption increased by 10 percent and COG consumption increased by 10 percent between 2009 and 2010.

** Confidential includes: Coal, Coke, Middle Distillates (LFO), Propane (LPG) and Others.
The Canadian transportation equipment manufacturing sector includes companies that manufacture aircraft, aircraft parts, automobiles, motor vehicle parts, trucks, buses, trailers, railroad rolling stock, ships and pleasure boats. The sector is a major contributor to the GDP of the Canadian economy. When dealers and parts and distribution networks are included as well as manufacturers, the sector employs more than 500,000 people across Canada.
ACHIEVEMENTS

NRCan and the Automotive Parts Manufacturers’ Association (APMA) celebrated their three-year partnership program in 2011. A key component of this program is providing experience for engineering co-op students on completing energy inventories and identifying savings opportunities at APMA member facilities. Through this program, co-op students identified $300,000 worth of energy savings.

For more information on the sector, visit oee.nrcan.gc.ca/industrial/transportationequipmentmanufacturing.

HIGHLIGHTS

Transportation Equipment Manufacturing — NAICS 336

Energy Intensity Index (1990–2010)

Base Year 1990 = 1.00

Energy intensity in the sector decreased by 15 percent between 2009 and 2010.

GDP increased by 11.7 percent while energy consumption decreased by 5 percent between 2009 and 2010.

Natural gas consumption decreased by 14 percent, steam consumption decreased by 6 percent and electricity consumption increased by 7.9 percent between 2009 and 2010.

** Confidential includes: Coal, Coal Coke, Heavy Fuel Oil (HFO) Middle Distillates (LFO), Propane (LPG) and Wood.

UPSTREAM OIL AND GAS

The upstream oil and gas sector includes companies that find and develop Canada’s vast oil and gas resources. The sector is broadly divided between conventional oil and gas production and oil sands production and upgrading. This section discusses the conventional oil and gas sector. The oil sands sector is covered separately in this report. Products and services derived by downstream sectors from the output of this industry include heating and transportation fuels, building supplies and materials, clothing, and medicines.

The exploration and production industry is represented by the Canadian Association of Petroleum Producers (CAPP) and the Small Explorers and Producers Association of Canada (SEPAC). CAPP represents both large and small companies that explore for, develop and produce natural gas and crude oil throughout Canada. CAPP’s member companies produce more than 90 percent of Canada’s natural gas and crude oil. CAPP’s associate members provide a wide range of services that support the upstream crude oil and natural gas industry. Together, CAPP’s members and associate members are an important part of a national industry with revenues of about $100 billion per year.
ACHIEVEMENTS

The oil and gas industry is a big investor in research and development into new, better ways of protecting the environment. Along with improved efficiencies in production, the industry is using innovations to help reduce its GHG emissions, including:

• Turning Waste into Fuel: Nexen and OPTI Canada are turning a heavy oil waste product into a synthetic gas to help fuel their steam-assisted gravity drainage operation (SAGD) at Long Lake.
• Using Waste Heat to Reduce Emissions: Talisman Energy Inc. has introduced a Waste Heat Recovery Unit (WHRU) in its Bigstone Plant near Fox Creek, Alberta. The Bigstone Plant WHRU was designed to transfer waste heat produced by gas turbine compressors and use it to heat liquids required to process gas. By transferring and re-using the waste heat, Talisman is able to reduce its fuel gas consumption.
• Carbon Capture and Storage (CCS) is a process that captures carbon dioxide (CO2) emissions and stores them in geological formations deep inside the earth. Industry is investigating its potential.1

For more information on the sector, visit oee.nrcan.gc.ca/industrial/upstreamoilandgas.

HIGHLIGHTS

Upstream Oil and Gas Sector — NAICS 211113

GHG emissions intensity increased by 4.2 percent between 2009 and 2010.

This was a result of overall production growth in oil sands and unconventional gas, as well as production shifting from conventional to unconventional reserves.

Unconventional reserves often require enhanced production techniques, which use more energy and consequently generate more GHGs than would be generated through the production of conventional reserves.

Data Source: CAPP Responsible Canadian Energy Report 2010 — Canadian Association of Petroleum Producers

1 Canadian Association of Petroleum Producers (CAPP) — CAPP on climate — what we’re doing
CIPEC EXECUTIVE BOARD MEMBERS
The executive board provides leadership for CIPEC’s task forces, associations and companies. The board’s 13 members are all volunteers with senior management responsibilities and expertise in energy efficiency. They are drawn from across the 23 CIPEC sectors. The executive board has regular teleconferences and meetings throughout the year.

CIPEC TASK FORCE COUNCIL MEMBERS
The 26-member CIPEC Task Force Council includes volunteer representatives from each of CIPEC’s 23 sectors. Members of the Task Force Council benefit from the energy efficiency expertise offered by their council peers. They meet regularly to exchange ideas and recommend ways to address the challenges associated with improving energy efficiency and sustainability reducing greenhouse gas emissions.

CIPEC LEADERS
CIPEC Leaders are drawn from CIPEC member companies and trade associations. Every member has access to tools and services offered by Natural Resources Canada’s Office of Energy Efficiency. CIPEC Leaders support voluntary initiatives that lead to energy cost savings and assist the Government of Canada in meeting its objectives to save energy and reduce greenhouse gas emissions and air pollution. Every two years, member companies are invited to compete in the CIPEC Leadership Awards showcasing their energy efficiency achievements. The awards are presented during CIPEC’s biennial conference.

NATURAL RESOURCES CANADA INDUSTRY AND TRANSPORTATION DIVISION CONTACTS
Contact information for the Program’s director, chiefs, general enquiries and Dollars to Sense Energy Management Workshops program.
CIPEC EXECUTIVE BOARD MEMBERS

Glenn Mifflin (Chair)
Executive Vice President and CFO
North Atlantic Refining

Mike Cassaday
Director
National Fuel Quality & Environmental Planning
Suncor Energy Company

John Coyne
Vice-President, General Counsel & Corporate Secretary
Unilever Canada Inc.

Wayne Kenefick
Vice-President
Sustainable Development
Graymont Western Canada Inc.

Peter Kinley
President & CEO
Lunenburg Industrial Foundry & Engineering

Richard Lamarche
Vice-President
Energy Division
Alcoa Canada Primary Metals

Yves Leroux
Vice-President
Regulatory & Government Affairs
Parmalat Dairy & Bakery Inc.

Andy Mahut
Manager
Energy Practices
U.S. Steel Canada Inc.

Ronald C. Morrison
Treasurer of the Board
Canadian Manufacturers & Exporters (CME)

Susan Olynyk
Senior Specialist, Climate Change
Environmental Department
ArcelorMittal Dofasco Inc.

George T. Partyka
Vice-President
Partner Technologies Incorporated

Tor Eilert Suther
President and General Manager
NewPage Port Hawkesbury Ltd.

John R. Vickers
Sales Manager
Hopper Foundry Limited
CIPEC TASK FORCE COUNCIL

CIPEC TASK FORCE COUNCIL CHAIR
Susan Olynyk
Senior Specialist, Climate Change
Environmental Department
ArcelorMittal Dofasco Inc.

ALUMINUM SECTOR TASK FORCE
Lorraine Rouisse
Director
Sustainable Development Health & Safety
Aluminium Association of Canada (AAC)

BREWERY SECTOR TASK FORCE
Edwin Gregory
Manager
Research and Analysis
Brewers Association of Canada (BAC)

CEMENT SECTOR TASK FORCE
Martin Vroegh
Environment Manager
St. Marys Cement Inc.

Adam Auer
Director
Sustainability, Business Development & Stakeholder Relations
Cement Association of Canada (CAC)

CHEMICAL SECTOR TASK FORCE
Fiona Cook
Director
Business and Economics
Chemistry Industry Association of Canada

CONSTRUCTION SECTOR TASK FORCE
Bill Ferreira
Director
Government Relations & Public Affairs
Canadian Construction Association (CCA)

ELECTRICAL AND ELECTRONICS SECTOR TASK FORCE
Wayne Edwards
Vice-President
EEMAC Council
Electro-Federation Canada

ELECTRICITY GENERATION SECTOR TASK FORCE
Channa S. Perera
Manager
Sustainable Electricity Program
Canadian Electricity Association (CEA)

FERTILIZER SECTOR TASK FORCE
David M. Finlayson
Vice-President
Science and Risk Management
Canadian Fertilizer Institute (CFI)

FOOD AND BEVERAGE SECTOR TASK FORCE
CIPEC Task Force Council Vice-Chair
Doug Dittburner
Managing Chief Engineer
Mondelez Canada Inc. – Gladstone Manufacturing Site (Cadbury)

FOUNDRY SECTOR TASK FORCE
Judith Arbour
Executive Director
Canadian Foundry Association (CFA)

GENERAL MANUFACTURING SECTOR TASK FORCE – ATLANTIC REGION
John Woods
Vice-President
Energy Development
Minas Basin Pulp & Power Company Limited
GENERAL MANUFACTURING SECTOR TASK FORCE – CENTRAL REGION
Jim Armstrong
EHS Specialist
Crown Metal Packaging Canada LP

GENERAL MANUFACTURING SECTOR TASK FORCE – NEW BRUNSWICK
Mike Bujold
Corporate Energy Manager
J.D. Irving Limited

LIME SECTOR TASK FORCE
Christopher Martin
Regional Environmental Manager
Carmeuse Lime (Canada) – Beachville Operation

MINING SECTOR TASK FORCE
Brendan Marshall
Director
Economic Affairs
The Mining Association of Canada (MAC)

OIL SANDS SECTOR TASK FORCE
Alisa M. Caswell
Energy Conservation Leader
Syncrude Canada Ltd.

PETROLEUM PRODUCTS SECTOR TASK FORCE
Gilles Morel
Director, Fuels
Canadian Fuels Association

PIPELINES SECTOR TASK FORCE
Bill Tubbs
Climate Change and Energy Efficiency Specialist
Spectra Energy

PLASTICS SECTOR TASK FORCE
Dr. Graham Knowles
Consultant
Canadian Plastics Industry Association (CPIA)

PULP AND PAPER SECTOR TASK FORCE
Bob Larocque
Director, Environment, Energy, Economics and Climate Change
Forest Products Association of Canada (FPAC)

STEEL SECTOR TASK FORCE
Chris Della Mora
Management Associate
Rolling Mill
Gerdau Amristeel

TRANSPORTATION EQUIPMENT MANUFACTURING SECTOR TASK FORCE
Michael O’Meara, P. Eng., C.E.M.
Senior Specialist
Environmental Compliance and Energy
Magna International Inc.

UPSTREAM OIL AND GAS SECTOR TASK FORCE
Elise Bieche
Manager
National Air Issues
Canadian Association of Petroleum Producers (CAPP)
CIPEC LEADER COMPANIES
BY SECTOR

ALUMINUM
Alcan inc. – Montréal
Alcan Specialty Aluminas – Brockville
Alcoa Canada Première fusion – Montréal
Alcoa Inc. – Baie-Comeau
Alcoa Inc. – Deschambault S.E.C.
Alcoa Ltee – Alcoa-Usine de Tige – Bécancour
Aluminerie de Bécancour inc. – Bécancour
Almag Aluminum Inc. – Brampton
Alumicor Limited – Toronto
Aluminaire Alucloutte inc. – Sept-îles
Novelis Inc. – Toronto
Recyclage d'aluminium Québec inc. – Bécancour
Universal Stainless & Alloys Inc. – Mississauga

CHEMICALS
Abrex Paint & Chemical Ltd. – Oakville
Agrigex Pharmacem Inc. – Brantford
Arlin Canada Ltd. – North Bay
Armco Ltee – Laval
Banner Pharmacaps (Canada) Ltd. – Delhi
Barteck Ingredients Inc. – Stoney Creek
Becker Underwood – Saskatoon
Benjamin Moore & Cie Limitée – Montréal
Big Quill Resources Inc. – Wynnard
BióVéctra Inc. – Charlottetown
BOC Gaz – Magog
Citanese Canada inc. – Boucherville
Charlotte Products Ltd. – Peterborough
Church & Dwight Canada inc. – Mount Royal
Colgate-Palmolive Canada Inc. – Mississauga
Collingwood Ethanol L.P. – Toronto, Collingwood
Commercial Alcohol Inc. – Chatham, Tiverton, Vanreens
Diversey Canada Inc. – Edmonton
Dominion Colour Corporation – Ajax, Toronto
Dyno Nobel Nitrogen Inc. – Maitland, North Bay
Eka Chimie Canada Inc. – Salaberry-de-Valleyfield, Magog
Ell Lilly Canada Inc. – Scarborough
Erémy Oleschemicals Canada Ltd. – Toronto
Este Launder Cosmetics Ltd. – Scarborough
Evonik Degussa Canada Inc. – Brampton, Burlington, Gibbons
Filox Insulations inc. – Sarnia
Fielding Chemical Technologies Inc. – Mississauga
Gardner Production Canada Inc. – Baie d'Urfe
Germigrene Corporation – Bramford
Grace Canada inc. – Valleyfield
Greenfield Ethanol Inc. – Tiverton
Honeywell – Amherstburg
Höstmann-Steinberg Limited – Brampton
HP Polymers Ltd. – Puslinch
ICI Canada Inc. – Concord
International Group Inc. (The) – Toronto
Jamieson Laboratories Ltd. – Windsor
Kronos Canada Inc. – Vanreens
Lanexss Inc. – Sarnia
L’Oréal Canada inc. – Montréal
Les Emballages Knowlton inc. – Knowlton
Marcuso Chemicals Limited – Niagara Falls
Nalco Canada Co. – Burlington
Nordion Inc. – Ottawa
NODA Chemicals Corporation – Corrula, Jaffre, Moore Township, St. Clair River
Oakside Chemicals Limited – London
OmegaChem inc. – Lévis, Saint-Romuald
Orca Canada inc. – Browning
Osmose-Pontex Inc. – Montréal
Oxy Vinyls Canada Inc. – Niagara Falls
Pharmascience inc. – Montréal
PolyOne Canada Inc. – Orangewville
Powder Tech Ltd. – Brampton
PPG Canada Inc. – Beaumont
Prater & Gamble Inc. – Brockville
Prolab Technologies Inc. – Telford Mines
Purdue Pharma – Pickering
Rhema Health Products Limited – Cuglatham
Rohn and Haas Canada Inc. – Scarborough
Sanofi Pasteur Limited – North York
Saskatchewan Minerals Inc. – Chaplin
Sifta Canada Corp. – Gliederich, Unity
Salucor Ltd. – Bradford
Saucy Techno inc. – Sherbrooke
tech B2S Inc. – Saint-Jean-sur-Richelieu
Technical Adhesives Ltd. – Mississauga
Tri-Lex Co. inc. – Saint-Eustache
Trillium Health Care Products Inc. – Perth, Brockville, Prescott, Neiwmarkt
Westbrook Technologies Inc. – Scarborough
Wyeth-Ayerst Canada inc. – Saint-Laurent

CONSTRUCTION
AmMar Mechanical & Electrical Contractors Ltd. – Lively
APOC Structures Inc. – Calgary, Spruce Grove
Basin Contracting Limited – Enfield
Battle River Asphalt Equipment Ltd. – Cut Knife
Construction DLI Inc. – Saint-Philippe-de-Lorraine
Denko Mechanical Ltd. – Springfield
Lockerie & Hole Industrial Inc. – Edmonton
M3 Roofing & Building Inc. – Scarborough
Mira Timber Frame Ltd. – Stoney Plain
Moran Mining & Tunneling Ltd. – Lively
Norland Building Supplies Ltd. – Edmonton
Pavages Beau-Bassin, division de Construction DLI inc. – Gaspé
Production Paint Striping Ltd. – Toronto
Sagart Construction Ltd. – Ottawa
Whitemud Ironworks Group Ltd. – Edmonton

CEMENT
Advanced Precast Inc. – Bolton
Anisraft International – Saint-Étienne-des-Grés, Cambridge
ESSROC Canada Inc. – Picton
Gordon Shaw Concrete Products Ltd. – Windsor
Groupe Permacon inc. – Div. des Matériaux de Construction
Oldcastle Canada Inc. – Ville d’Anjou, Québec
Permacon Group Inc. – Milton
Permacon Ottawa – Stittsville
Permacon Group Inc. – Bolton, Oshawa
Groupe Permacon inc. – Division Trois-Rivières – Trois-Rivières
Groupe Permacon (Sherbrooke) – Div. des Matériaux de Construction Oldcastle Canada inc. – Sherbrooke
Dector Precast – Div. of Oldcastle Building Products
Canada – Stoney Creek
Holcin (Canada) Inc. – Mississauga, Joliette
Dufferin Concrete – Concord
International Erosion Control Systems – West Lorne, Rodney
Lafarge Canada inc. – Montréal
Lehigh Inland Cement Limited – Edmonton
Lehigh Northwest Cement Limited – Richmond
Pre-Con Inc. – Brampton
St. Marys Cement Inc. – Bowmanville

ELECTRICAL & ELECTRONICS
ABB Inc. – Lachine, Québec, Saint-Laurent, Vanreens
ABB Bomen Inc. – Québec
Alstom Hydro Canada Inc. – Sorel-Tracy
Apollo Microwave Inc. – Pointe-Claire
ASCO Valve Canada – Bramford
Best Theratronics Ltd. – Ottawa
C-Vision Limited – Amherst
Candor Industries Inc. – Toronto
Circuits GBM enr. – Ville Saint-Laurent
Crest Circuit Inc. – Markham
Cogent Power Inc. – Burlington
DALSA Semiconductor Inc. – Brantford
DRS Technologies Canada Ltd. – Carleton Place
Duke Electric Ltd. – Hamilton
Duplication Corporation – Thornhill
Eaton Yale Company – Milton
Eclairages PA-EC inc. (Les) – Laval
Epower Inc. – London
Elektrolox Canada Corp. – L’Assomption
Engenier Canada Inc. – Walkerton
EPM Global Services Inc. – Markham
Firan Technology Group – Scarborough
General Electric Canada – Peterborough
General Dynamics Canada – Ottawa, Calgary
GGI International – Lachute
Honeywell – Mississauga
IBM Canada Ltd. – Bromont, Markham
Ideal Industries (Canada) Corp. – Ajax
Master Fio Technology Inc. – Hawkesbury, North Vancouver
MDS Nordiac Inc.—Kotono
Milex Circuit (Canada) Inc.—Scarborough
Molson Energy Inc.—Sackville, Spruce Grove, Toronto
Nexans Canada Inc.—Fergus
Osram Sylvania Ltd.—Mississauga
Osram Sylvania Tête—Drummondville
Pivotal Power Inc.—Bedford
Powersmiths International Corp.—Brampton
Proto Manufacturing Ltd.—Oldcastle
Prysmian Systèmes et Câbles—Saint-Jean-sur-Richelieu
Purifics ES Inc.—London
Ralston Metal Products Ltd.—Guelph
Real Time Systems Inc.—Toronto
Remco Solid State Lighting—Toronto
Rhenmetall Canada inc.—Saint-Jean-sur-Richelieu
Rockwell Automation Canada Inc.—Cambridge
SRTC Electric Canada Limited—Toronto
Southwire Canada—Stouffville
Surrett Battery Company Limited—Springhill
Systèmes Electroniques Matrox Ltee—Dorval
Tyco Electronics Canada Ltd.—Markham
Tyco Safety Products—Toronto
Tyco Thermal Controls Limited—Toronto
Ultra Electronics Maritime Systems—division of Canada Defence Inc.—Dartmouth
Vanisco Electronics Ltd.—Winnipeg

ELECTRICITY GENERATION
Ontario Power Generation—Toronto
Qube, Energy Corporation—Iqaluit

FERTILIZER
Agrium Inc.—Redwater
Canadian Fertilizers Limited—Medicine Hat
Fafard et Frères Ltee—Saint-Bonaventure
Mosaic Potash Belle Plaine—Belle Plaine
Mosaic Potash Colonsey—Colonsey
Mosaic Potash Estershy—Esterhazy
ProfitCo Cooperative Agricole—Joliette
Sherritt International Corporation—Fort Saskatchewan
Tourbières Berger Ltee (Les)—Baie Sainte-Anne, Baie-du-Vin, Saint-Moïse

FOOD & BEVERAGE
A. Harvey & Company Limited—St. John’s
Argenta Freezers—Dunville
Browning Harvey Limited—St. John’s, Corner Brook, Grand Falls-Windsor
Abattoir Saint-Germain inc.—Saint-Germain-de-Granham
AgEnergy Co-operative Inc.—Guelph
Agri-Marché Inc.—Saint-Tidoune
Alberta Processing Co.—Calgary
Alex Coulombe Ltee—Québec
Aliments Lecuyer—Yamachiche
Aliments Dumont—Gordon Bleu inc.—Anjou
Aliments Ultima Foods inc.—Granby
Andrés Wines Ltd.—Grimsky
Aliments ED Foods inc.—Pointe-Claire
Aliments Multiar inc. (Les)—Montréal
Aljane Greenhouses Ltd.—Pitt Meadows
Alikema Greenhouses Ltd.—Grimsky
Allen’s Fisheries Limited—Benoit’s Cove
Amico Farms Inc.—Truro
Andrew Hendriks and Sons Greenhouses—Beavimsville
Freeman Herbs—Beavimsville
Andrew’s Greenhouses Inc.—Ruthven
Antigoniob Abattoir Ltd.—Antigonish
Antonio Bajar Greenhouses Limited—Newmarket
Arnold Meat Packers Inc.—Kitchener
Arshiyan Trans laden Inc.—Pomachiche
Balfour Greenhouses Ltd.—Fenwick
Bayview Greenhouses (Jordan Station) Inc.—Brantford, Jordan Station
Belgian Nursery Limited—Breslau
Beothic Fish Processors Limited—Badgers Quay
Bevo Farms Ltd.—Miner
Black Velvet Distilling Company—Lethbridge
Boekestyn Greenhouses—Jordan Station
Bonduelle Canada Inc.—Bedford, Saint-Cécile-de-Granby, Saint-Césaire, Saint-Denis-sur-Richelieu, Sainte-Marthe
Bonduelle Ontario Inc.—Ingersoll, Stratford, Tecumseh
Border Line Feeders Inc.—Clayton
Boulangerie St-Métric Inc.—Adstock
Bouliart inc.—Lachute
Breakwater Fisheries Limited—Cattleville
Breakview Greenhouses—Niagara-on-the-Lake
Brookdale Treefarm Nurseries—Niagara-on-the-Lake
Brookside Cold Storage Ltd.—Chilliwack
Brookeview Poultry Limited—Bridgetown
Browning Harvey Limited—St. John’s, Corner Brook, Grand Falls, Windsor
Brunato Farms Limited—Leamington
Bünzle Farms Limited—Lyn, Brockville, Calgary, Mississauga, Ponderosa, Winnipeg
Ferme St-Zotique—Saint-Zotique
Island Egg—Westholme
Maple Lyn Foods Ltd.—Strathroy
Deufs Bec-Onc Inc. (Les)—Upton
C & M Seeds—Palmerston
Cafe Vittoria inc.—Sherbrooke
Campbell Company of Canada—Listowel, Toronto
Canada Bread Company Ltd.—Beauparlant, Calgary, Chicoutimi, Concord, Delta, Edmonton, Etobicoke, Grand Falls, Hamilton, Langley, Laval, Levis, London, Moncton, Mont-Laurier, Montréal, North Bay, Québec, Scarborough, Saint-Claude—Limoilou, Saint-John’s, Toronto, Woodstock
Canada Malting Co. Ltd.—Montréal
Canadian Organic Maple Co. Ltd.—Bath
Cantor Baillery—Montréal
Canyon Creek Soup Company Ltd.—Edmonton
Carigli Animal Nutrition—Camrose, Lethbridge
Carigli Foods—High River, Toronto
Carigli Limited—Winnipeg, Sarnia
Carigli Aghorizons—Melbourne, Albright, Brandon, Canora, Dauphin, Edmonton, Elm Creek, Lethbridge, Nicklen Siding, North Battleford, Princeton, Rosetown, Rycroft, Shetland, Staples, Strathroy, Talbotville, Vegreville, Winnipeg, Yorkton
Carigli Meats Canada—London
Carigli Meat Solutions—Sudbury
Casa Italia Ltd.—Brampton, Port Colborne
Cavendish Farms—New Annapolis
Cedar Beach Acres Ltd.—Kingsville
Cedar Field Greenhouses Ltd.—Freeton
Cedarline Greenhouses—Dresden
Central Alberta Greenhouse Ltd.—Blackfalds
Corciola Farms Inc.—Bradford
Sure Fresh Foods Inc.—Bradford
Champion Feed Services Ltd.—Barrie
Champion Petfoods Ltd.—Marinville
Charles A. Heckt Holdings Ltd.—010 Johnston Greenhouses & Garden Centre—Peterborough
Clearwater Seafoods Limited Partnership—Bedford
Clearwater Lobsters Ltd.—Newport, Clark’s Harbour
Continental Seafoods—Shelburne
Grand Bank Seafoods—Grand Bank
Highland Fisheries—Glace Bay
Pierres Fisheries—Lockeport
St. Anthony Seafoods Limited—Partnership—St. Anthony
Continental Seafoods Limited Partnership—Partnership—St. Anthony
Coca-Cola Refreshments Canada—Toronto, Calgary
Cold Spring Farm Limited—Thamesford
Colonial Florists Ltd.—St. Catharines
Commercial Alcohols Inc.—Toronto, Brampton
Compagnie Allian Candy (La)—Granby
Conestoga Meat Packers Ltd.—Breslau
Conners Bros.—Blocks Harbour
Continental Mushroom Cooperation (1989) Ltd.—Metcalfe
Corries Farms Limited—Kingsville
CosMic Plants Inc.—Beavimsville
County Grover Greenhouse—Medicine Hat
Cristofari Farms Inc.—Leamington
Crust Craft Inc.—Edmonton
Crawley Farms Norwood Ltd.—Norwood
Dallaire Specialites inc.—Rayon–Noranda
Dare Foods Limited—Toronto
Dainty Foods—Division of MRIM (Canada) Inc.—Windsor
Dairytown Products Ltd.—Sussex
Debono Greenhouses Limited—Waterford
Del Sol Greenhouses Inc.—Kingsville
Devan Greenhouses Ltd.—Abbotsford
Diageo Canada Inc.—Gimli
Doric International Ltd.—Ruthven
Don Chapman Farms Ltd.—Lakeview Vegetable Processing Inc.—Queensville
Dr. Oetker Canada Ltd.—Mississauga
Dykstra Greenhouses—St. Catharines
E.D. Smith and Sons LP—Seaforth, Vinona
East Side Acres—Leamington
Ed Sobkowich Greenhouses—Grimsky
Elmira Poultry Inc.—Waterloo
Enniskillen Pepper Co. Ltd.—Petrolia
Er Browse Acres Inc.—Kingsville, Leamington
Exidor Cooperative Avicole—Saint-Anselme
Family Muffins et Desserts Inc.—Sherwood Park
Fancy Pockey Corporation—Moncton
Federated Co-operatives Limited—Saskatoon
Ferme Dachemin s.e.n.c.—Saint-Damase, Saint-Pie
Ferme La Roquette inc.—Gatineau
Fermes Lufa inc. (Les)—Montréal
Ferntree Flowers Limited—Dethi
Fishery Products International Limited—St. John’s, Port Union, Trinity
Five Star Farms—Ruthven
Fleischmann’s Yeast—Calgary
Flower Ranch (The)—Stratford, London
Fresh Sprott International Ltd.—Mississauga
Freshwater Fisheries Society of BC—Victoria
Clearwater Trout Hatchery—Clearwater
Fraser Valley Trout Hatchery—Abbotsford
Kootenay Trout Hatchery—Fort Steele
Summerland Trout Hatchery—Summerland
Vancouver Island Trout Hatchery—Duncan
Freybe Gourmet Foods Ltd.—Langley
Frilia Flora Greenhouses—Beavimsville
Frito Lay Canada—Mississauga, Ancaster, Cambridge, Lethbridge, Lévis, New Minas, Pointe-Claire, Taber
Froese Vegetables Inc.—Vieirge
Furlani’s Food Corporation—Mississauga
O.E. Barbour Inc.—Sussex
Banoog Bros. Limited—St. Stephen
General Mills Canada Corporation—Midland, Saint-Hubert, Winnipeg
George Saint et Sons Greenhouses—Kleinburg
Good Taste Food Products Inc. – Scarborough
Green Mountain Gardens – Stoney Creek
Greenfield Gardens (Niagara) Inc. – Fenwick
Greenwood Mushroom Farm – Ashburn, Greenwood
Gregory Greenhouses Inc. – St. Catharines
Griffith Laboratories Ltd. – Toronto
Guil Valley Greenhouses – Blacks/days
H.J. Heinz Company of Canada Ltd. – Leamington
Handi Foods Ltd. – Windsor
Hanemeyer Greenhouses – Vineland Station
Hans Dairy Inc. – Toronto
Harster Greenhouses Inc. – Dundas
Heritage Frozen Foods Ltd. – Edmonton
Hillside Hothouse Ltd. – Ruthven
Hiram Walker & Sons Limited – Windsor
Homeland Grain Inc. – Burgessville
Houweiling Nurseries Ltd. – Delta
HQ Fine Foods – Edmonton
HSF Foods Ltd. – Centreville
Hubberts Industries – Brampton
Ice River Springs Water Co. Inc. – Feverham
Icewater Seafoods Inc. – Arnold’s Cove
Imperial Tobacco Canada Ltd. – Montréal
Ingrédien Canada Inc. – Cardinal, Etobicoke, London, Port Colborne
Innivata Foods Corp. – Edmonton
Jade Meat Products Ltd. – Beaverton
Jayden Floral – Gatehouse
Jeffery’s Greenhouses Plant II Limited – Jordan Station
Jeffery’s Greenhouses Inc. – St. Catharines
Jem Farms – Ruthven
John Kauwenberg Floral Inc. o/a Foliera – Beaverton
Jolly Farmer Products Inc. – Northampton
JTL-Macdonald Corp. – Montréal
Kapital Produce Limited – Leamington, Ruthven
Kejay Farms Inc. – Chatam
Kern Water Systems Inc. – Sarnia
Kraft Canada Inc. – Ville Mont-Royal, Vancouver
Kuyvenhoven Greenhouses Inc. – Brampton, Halton Hills
La Coop Fédérée – Montréal, Joliette, Saint-Romuald
Comax Coopérative Agricole – Saint-Hyacinthe
Société Coopérative Agricole des Bois-Francs – Victoriaville
La Corporation d’aliments Ronzoni du Canada – Montréal
La Rocca Creative Cakes – Thornhill
Landmark Foods Inc. – Ayr, Lotsford, Brossard, Claresholm, Leduc, Medicine Hat, Otterburne, Rosenort, Strathmore, Winnipeg
Laprise Farms Ltd. – Pain Court
Larsen Foods – Berwick
Laissonde Beverages Canada – Toronto
Leahy Orchards Inc. – Franklin, Saint-Antoine Abbé
Legal Alfalfa Products Ltd. – Legal
Les Aliments Dare limitée – Sainte-Martine
Les Cuisines Gaspésiennes île-a-Matane
Les Distilleries Schenley inc. – Salaberry-de-Valleyfield
Les Jardinières du chef – Blainville
Les Oeufs d’Or – Val-d’Or
Les Productions Horticoles Demers inc. – Saint-Nicolas
Les produits Zinda Canada inc. – Blainville
Les Serres Bergeron – Notre-Dame-du-Laus, Notre-Dame-de-la-Salette
Les Serres Daniel Lemieux inc. – Saint-Rémi
Les Serres Florimont – Saint-Paulin
Les serres Gilles et Francis lahave enr. – Saint-Michel-de-Napierville
Les Serres Gola – Mont Saint-Gregoire
Les Serres Maclaren (1989) Inc. – Nyon
Les Serres R. Bergeron inc. – Saint-Apollinaire
Les Serres Riel inc. – Saint-Rémi
Les Serres Sagam (2003) Inc. – Chicoutimi, Sainte-Sophie
Les Serres Nouvelles Cultures inc. – Sainte-Sophie
Les Serres Serge Dupuis – Saint-Élie-de-Caxton
Les Serres Saint-Benoît-du-Lac inc. – Austin
Les Viandes du Breton inc. – Rivière-du-Loup
Lilypistle Cooperative Limited – Edmonton
Lindy’s Flowers – Dunnville
Link Greenhouses – Bowmanville
Linwell Gardens Ltd. – Beamsville
Lucerne Foods – Calgary
Lyalta Gardens – Lyalta
Lyo-San inc. – Latchute
Madelimer inc. – Edmonton
Maidstone Bakers Co. – Brantford
Maison des futailles – Saint-Hyacinthe
Maîtrespouc Canada Ltd. – Winnipeg
Maple Leaf Consumer Foods Inc. – Hamilton, Laval, Leithardgie, Mississauga, North Battleford, Surrey, Weston, Winnipeg
Maple Leaf Foods Inc. – Burlington, Kitchener
Maple Leaf Fresh Foods – Brandon, Burlington, Charlottetown, Lethbridge, Stoney Creek, New Hamburg, Toronto, Wotaskiwin
Maple Lodge Farms Inc. – Norval
Marcel Despatie inc. – Saint-Louis-de-Richelieu
Marsh Greenhouses – Dunnville
Mars Canada Inc. – Bolton, Newmarket
Marsan Foods Limited – Toronto
Masrownadi Estate Winery – Kingsville, Grand Falls
MCCain Foods (Canada) – Portage la Prairie, Borden-Carleton, Carby, Florenceville, Grand Falls, Mississauga, Toronto
Charcuterie la Tour Eiffel – Division of McCain Foods Limited – Quebec, Blainville
Wong Wing – Division of McCain Foods Limited – Montréal
Meyers Fruit Farms and Greenhouses – Niagara-on-the-Lake
Minor Bros. Farm Supply Ltd. – Dunnville
Mitchell’s Gourmet Foods Inc. – Saskatoon
Mondelez Canada Inc. – Chambly
Biscuiterie Montréal, Montréal
Cadbury Plant, Toronto
Lakeshore Bakery, Toronto
Peek Frean Bakery, East York
Montreal Pita inc. – Montréal
Mother Parkers Tea & Coffee Inc. – Ajax, Mississauga
Mt. Lehman Greenhouses (1999) Ltd. – Mt. Lehman
Mucci Farms Ltd. – Kingsville
Nadeau Poutry Farm Ltd. – Saint-François-de-Madawaska
Nanticoke Greenhouses Limited – Simcoe
Nature Fresh Farms – Leamington
Nature’s Finest Produce Ltd. – Pain Court
Nestlé Canada Inc. – Chesapeake, Edinburgh, North York, Rexton, Scarborough, Sarnia, Toronto, Trenton
Nestlé Professional – Trenton
Nestlé Purina PetCare – Mississauga
Nestlé Waters Canada – Guelph
New West Milling – Bassano
Nicol Florist Ltd. – Brantford
Noël Wilson & fils S.N.C. – Saint-Rémi
Norfolk Fruit Growers’ Association (The) – Simcoe
Norfolk Greenhouses Inc. – Courtland
Northern Alberta Processing Co. – Edmonton
Northumberland Co-operative Limited – Miramichi
Nuvanut Development Corporation – Rankin Inlet
Kitikmeot Foods Ltd. – Cambridge Bay
Kivalliq Arctic Foods Ltd. – Rankin Inlet
Pinggiirtung Fisheries Ltd. – Pangnirtung
Oakrun Farm Bakery Ltd. – Ancaster
Ocean Nutrition Canada Ltd. – Dartmouth
Okanagan North Growers Cooperative – Winfield
Old Dutch Foods Inc. – Summerside, Winnipeg
Olymel S.E.C. / LP – Red Deer
Aliments Prince S.E.C. – Princeville, Cornwall
Machinerie Olymel (1998) Inc. – Saint-Valléien-de-Milton
Olymel S.E.C. – Berthierville, Arriou, Brampton, Ilebov, Sainte-Hyacinthe, Trois-Rivieres, Saint-Damase, Saint-Jean-sur-Richelieu
Unilindon inc. – Saint-Jean-Baptiste
Omstead Foods Limited – Wheatley
Drangeline Farms Limited – Leamington
Orchard Park Growers Ltd. – St. Catharines
Otter Valley Foods Inc. – Tillsonburg
Hillaton Foods – Port Williams
P. Ravensbergen & Sons Ltd. – Smithville
Palmerston Grain – Palmerston
Paradise Hill Farms Inc. – Nanton
Paradise Island Foods Inc. – Nanaimo
Parrish & Heimbecker Limited – Glencoe
Parkway Gardens Ltd. – London
Pelee Hydroponics – Leamington
Pepé’s Mexican Foods Inc. – Etobicoke
Pepper Tree Greenhouses Ltd. – Lappierville
Pepsi-Cola Canada Beverages – Mississauga
Pepe’s Foods Canada Inc. – Peterborough, Trenton
Petite Bretonne inc. (Lal) – Blainville
Planet Bean Coffee Inc. – Guelph
Ponsetta Plantation Inc. (The) – Bothwell
Prairie Mushrooms [1992] Ltd. – Sherwood Park
Prism Farms Ltd. – Leamington
Production Serres Yergeau inc. – Sherbrooke
Produits Alimentaires Viau inc. (Les) – Montréal-Nord
Pyramid Farms Ltd. – Leamington
Qaarsuk Farms Ltd. – Iqaluit
Redpath Sugar Ltd. – Toronto
Regal Greenhouses Inc. – Virgin
Reif Estate Winery Inc. – Niagara-on-the-Lake
Reinhardt Foods Limited – Stoney Creek
Rekiex Holdings Ltd. – Bowmanville
Rich Products of Canada Limited – Fort Erie
Rivo–Land Farms Limited – Campbellville
Rootham’s Gourmet Preserves Ltd. – Guelph
Rosa Flora Limited – Dunnville
Rothmans, Benson & Hedges Inc. – North York
Rothsay – Downs, Moorfield, Quebec, Saint-Boniface, Truro
Rothsay, A member of Maple Leaf Foods Inc. – Winnipeg
Round Hill Poultry Limited – Roundhill
Sakai Spice (Canada) Corporation – Lethbridge
Les Salaisons Desco inc. – Boisbriand
Sanimax ACI inc. – Lévis
Sanimax Lom inc. – Montréal
Scotia Garden Seafoods Inc. – Yarmouth
Scotian Harvest Limited – Clarks Harbour, Lower Woods Harbour
Schlenk Farms & Greenhouses Co. Limited – St. Catharines
Schneider Foods – Ayr, Mississauga, Port Perry, St. Marys, Toronto
Schuurman Greenhouses Ltd. – Branchton
Scottsbury Co-Operatives Services Ltd. – Truro
Scott Street Greenhouses Ltd. – St. Davids
Select Food Products Limited – Toronto
Sepp’s Gourmet Foods Ltd. – Delta, Richmond Hill
Serres du Marais, Inc. (Les) – Sainte-Martine
Serres Sylvain Céroux (Québec) inc. (Les) – Laval
Serres Maryon – Anse-Canson
Shah Trading Company Limited – Scarborough, Port Williams, Saint-Félix-de-Valois, Saint-Hugues, Saint-Hyacinthe, Saint Marys, St. Romuald, Stevenville, Summerside, Sussex, Truro, Weston, Yamachiche
Siftco Canada Corporation – Goderich Evaporator Plant – Goderich
Simpelz Canada (II) Limited – Portage La Prairie
Soffina Foods Inc. – London
Soil Less Growing Systems Inc. – Calgary
Southshore Greenhouses Inc. – Kingsville
Sovereign Farms – Waterford
Spring Valley Gardens Niagara Inc. – St. Catharines
St. David’s Hydroponics Ltd. – Niagara-on-the-Lake, Beamsville
Stag’s Hollow Winery and Vineyard Ltd. – Okanagan Falls
Stratus Vineyards Limited – Niagara-on-the-Lake
TRANSPORTATION EQUIPMENT MANUFACTURING

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.G. Simpson Automotive Inc.</td>
<td>Cambridge, Oshawa, Scarborough</td>
</tr>
<tr>
<td>ABC Group Inc.</td>
<td>Toronto</td>
</tr>
<tr>
<td>ABC Group Climate Controls Systems Inc.</td>
<td>Toronto</td>
</tr>
<tr>
<td>ABC Group Flexible Engineered Product Inc.</td>
<td>Etobicoke</td>
</tr>
<tr>
<td>ABC Group Exterior Systems Systems Inc.</td>
<td>Toronto</td>
</tr>
<tr>
<td>ABC Group Interior Systems Systems Inc.</td>
<td>Toronto</td>
</tr>
<tr>
<td>ABC Group Product Development Systems Inc.</td>
<td>Toronto</td>
</tr>
<tr>
<td>ABC Metal Products Inc.</td>
<td>Toronto</td>
</tr>
<tr>
<td>LCF Manufacturing Ltd.</td>
<td>Rexdale</td>
</tr>
<tr>
<td>LCF Manufacturing Ltd.</td>
<td>Weston</td>
</tr>
<tr>
<td>Aalbers Tool & Mold Inc.</td>
<td>Oldcastle</td>
</tr>
<tr>
<td>Afflina Canada ULC</td>
<td>Guelph</td>
</tr>
<tr>
<td>Anton Mfg.</td>
<td>Concord</td>
</tr>
<tr>
<td>Arcon Metal Processing Inc.</td>
<td>Richmond Hill</td>
</tr>
<tr>
<td>Avcorp Industries Inc.</td>
<td>Delta</td>
</tr>
<tr>
<td>Aviation Lemex inc.</td>
<td>Saint-Hubert</td>
</tr>
<tr>
<td>B & R Imperial Heating Treatment Canada ULC</td>
<td>Kitchener</td>
</tr>
<tr>
<td>Blais Automote Inc.</td>
<td>Bromont</td>
</tr>
<tr>
<td>Bombardier Aerospace</td>
<td>Downsview</td>
</tr>
<tr>
<td>Bombardier Aeronautique</td>
<td>Mirabel, St. Laurent</td>
</tr>
<tr>
<td>Bombardier Products Recrétifs Inc.</td>
<td>Valcourt</td>
</tr>
<tr>
<td>Bovern Enterprises Inc.</td>
<td>Markham</td>
</tr>
<tr>
<td>Burlington Technologies Inc.</td>
<td>Burlington</td>
</tr>
<tr>
<td>Cami Automotive Inc.</td>
<td>Ingersoll</td>
</tr>
<tr>
<td>Capital Tool & Design Ltd.</td>
<td>Concord</td>
</tr>
<tr>
<td>Chairers Suspensions International Inc.</td>
<td>Mississauga</td>
</tr>
<tr>
<td>Chemin de fer Canadien Pacifique</td>
<td>Montréal</td>
</tr>
<tr>
<td>Citene Almac International Inc.</td>
<td>Laval</td>
</tr>
<tr>
<td>Composite Atlantic Limited</td>
<td>Mississauga</td>
</tr>
<tr>
<td>Coves Mfg.</td>
<td>Mississauga</td>
</tr>
<tr>
<td>CSI Gear Corporation</td>
<td>Mississauga</td>
</tr>
<tr>
<td>Daifuku Canada Inc.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Daikin Canada Inc.</td>
<td>Windsor</td>
</tr>
<tr>
<td>Daimler Trucks North America</td>
<td>Mississauga</td>
</tr>
<tr>
<td>Dana Canada Corporation</td>
<td>Britannia, Oakville</td>
</tr>
<tr>
<td>Dana Thermal Products</td>
<td>Mount Forest</td>
</tr>
<tr>
<td>Dottec Industries</td>
<td>Newmarket</td>
</tr>
<tr>
<td>Dresden Industrial</td>
<td>Stratford</td>
</tr>
<tr>
<td>Dutra-Lite Heat Transfer Products Ltd.</td>
<td>Calgary</td>
</tr>
<tr>
<td>Dyna-MIG Mfg. of Stratford Inc.</td>
<td>Stratford</td>
</tr>
<tr>
<td>Eston Manufacturing</td>
<td>Guelph</td>
</tr>
<tr>
<td>Eucoptor Canada Limited</td>
<td>Fort Erie</td>
</tr>
<tr>
<td>F R P Mfg., Inc.</td>
<td>Brampton</td>
</tr>
<tr>
<td>Faurecia Automotive Seating</td>
<td>Bradford</td>
</tr>
<tr>
<td>Ford Motor Company Canada</td>
<td>Oakville</td>
</tr>
<tr>
<td>Formet Industries</td>
<td>St. Thomas</td>
</tr>
<tr>
<td>GAFIX Rail Canada</td>
<td>Dublin</td>
</tr>
<tr>
<td>General Motors of Canada</td>
<td>Mississauga</td>
</tr>
<tr>
<td>Global Emissions Systems Inc.</td>
<td>Whitby</td>
</tr>
<tr>
<td>Glueckler Metal Inc.</td>
<td>Barrie</td>
</tr>
<tr>
<td>Groupe Environnement Labrie</td>
<td>Saint-Alphonse</td>
</tr>
<tr>
<td>Halla Climate Control Canada Inc.</td>
<td>Belleville</td>
</tr>
<tr>
<td>Hastech Mfg.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Héroux Devtek inc.</td>
<td>Longueuil,Scarborough</td>
</tr>
<tr>
<td>Hitachi Construction Truck Manufacturing Ltd.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Honda of Canada Mfg.</td>
<td>Alliston</td>
</tr>
<tr>
<td>Kingsville Stamping Ltd.</td>
<td>Kingsville</td>
</tr>
<tr>
<td>Jefferson Elora Corporation (JEC)</td>
<td>Elora</td>
</tr>
<tr>
<td>Johnson Controls LP</td>
<td>London, Milton, Mississauga, Tillsonburg</td>
</tr>
<tr>
<td>Krafu Machine Works Ltd.</td>
<td>Thorold</td>
</tr>
<tr>
<td>Lunenburg Industrial Foundry & Engineering Limited</td>
<td>Lunenburg</td>
</tr>
<tr>
<td>Lear Corporation - Mississauga</td>
<td>Mississauga</td>
</tr>
<tr>
<td>Leggett & Platt Inc.</td>
<td>London</td>
</tr>
<tr>
<td>Schukra of North America</td>
<td>Lakeshore</td>
</tr>
<tr>
<td>Linex Manufacturing - Division of Linamar Corp Inc.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Linens Automotive Partnership - Woodbridge</td>
<td>Guelph</td>
</tr>
<tr>
<td>LPP Manufacturing - Division of Linergy Manufacturing Inc.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Mancor Canada Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Massiv Die-Form - Brampton</td>
<td>Oakville</td>
</tr>
<tr>
<td>Meritor Suspension Systems Company - Chatham, Milton</td>
<td>Milton</td>
</tr>
<tr>
<td>Metal Marquis Inc.</td>
<td>La Salle</td>
</tr>
<tr>
<td>Modatex Systems - Milton</td>
<td>Milton</td>
</tr>
<tr>
<td>National Steel Car Limited</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Nemak Canada - Windsor</td>
<td>Windsor</td>
</tr>
<tr>
<td>Neptunus Yachts - St. Catharines</td>
<td>Niagara</td>
</tr>
<tr>
<td>NorthStar Aerospace (Canada) Inc.</td>
<td>Milton</td>
</tr>
<tr>
<td>NTN Bearing Corporation of Canada - Mississauga</td>
<td>Oakville</td>
</tr>
<tr>
<td>Omron Dualtec Automotive Electronics Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Ontario Drive & Gear Limited - New Hamburg</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Orenda Aerospace Corporation - Mississauga</td>
<td>Oakville</td>
</tr>
<tr>
<td>Orlick Industries Limited</td>
<td>Hamilton</td>
</tr>
<tr>
<td>Pilkington Glass of Canada Limited - Collingwood</td>
<td>Oakville</td>
</tr>
<tr>
<td>Platinum Tool Technologies - Oldcastle</td>
<td>Oakville</td>
</tr>
<tr>
<td>Pratt & Whitney Canada Corp.</td>
<td>Longueuil, Enfield, Saint-Hubert</td>
</tr>
<tr>
<td>Presstran Industries - St. Thomas</td>
<td>Windsor</td>
</tr>
<tr>
<td>Prévost - division of Volvo Group Canada - Sainte-Claire</td>
<td>Windsor</td>
</tr>
<tr>
<td>Prince Metal Products Ltd.</td>
<td>Windsor</td>
</tr>
<tr>
<td>Praco Limited - Oakville - Edmonton, Joffre, Regina, Sarnia</td>
<td>Sarnia</td>
</tr>
<tr>
<td>Quadraflax Manufacturing - Division of Linamar Corp Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>R Co. Mfg.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Remtec Inc.</td>
<td>Chambly</td>
</tr>
<tr>
<td>Rotoff Manufacturing - Division of Linamar Corp Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Rollisabm Mfg., division of Decoma International Inc.</td>
<td>Concord</td>
</tr>
<tr>
<td>Satisfied Brake Products Inc.</td>
<td>Cornwall</td>
</tr>
<tr>
<td>Simcoe Parts Service Inc.</td>
<td>Alliston</td>
</tr>
<tr>
<td>Spinc Manufacturing - Division of Linamar Corp Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Stackpole International - Mississauga</td>
<td>Mississauga</td>
</tr>
<tr>
<td>StandardAero - Winnipeg</td>
<td>Oakville</td>
</tr>
<tr>
<td>ST Technologies Inc.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Summo Steel Corp.</td>
<td>Guelph</td>
</tr>
<tr>
<td>Sydney Coal Railway Inc.</td>
<td>Sydney</td>
</tr>
<tr>
<td>Tool-Plas Systems Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Toronto Cast Integrated Technologies - Concord</td>
<td>Toronto</td>
</tr>
<tr>
<td>Toyota Motor Manufacturing Canada Inc. - Cambridge</td>
<td>Oakville</td>
</tr>
<tr>
<td>Traex Mfg. - Division of Linamar Corp Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>TRW Automotive - St. Catharines, Woodstock</td>
<td>Guelph</td>
</tr>
<tr>
<td>FSTech Canada Inc.</td>
<td>Newmarket</td>
</tr>
<tr>
<td>Unison Engine Components - Orillia</td>
<td>Oakville</td>
</tr>
<tr>
<td>Vehcom Manufacturing - Division of Linamar Corp Inc.</td>
<td>Oakville</td>
</tr>
<tr>
<td>Ventra Group Co.</td>
<td>Calgary</td>
</tr>
<tr>
<td>Flex-n-Gate Bradford - Bradford</td>
<td>Calgary</td>
</tr>
<tr>
<td>Flex-n-Gate Canada - Tecumseh</td>
<td>Edmonton</td>
</tr>
<tr>
<td>Flex-n-Gate Seeburn - Beaverton, Tottenham</td>
<td>Edmonton</td>
</tr>
<tr>
<td>Venti Metal Products - Glencoe, Tecumseh, Windsor</td>
<td>Oakville</td>
</tr>
<tr>
<td>Venti AGR - Ridgeway</td>
<td>Oakville</td>
</tr>
<tr>
<td>Venti Plastics Kitchener - Kitchener</td>
<td>Oakville</td>
</tr>
<tr>
<td>Venti Plastics Windsor - Windsor</td>
<td>Oakville</td>
</tr>
<tr>
<td>Volvo Cars of Canada</td>
<td>Toronto</td>
</tr>
<tr>
<td>Wallaceburg Preferred Partners - Wallaceburg</td>
<td>Toronto</td>
</tr>
<tr>
<td>Woodbridge Foam Corporation - Mississauga</td>
<td>Oakville</td>
</tr>
</tbody>
</table>

UPSTREAM OIL AND GAS

- AltaGas Services Inc. - Wabasca
- Baytex Energy Ltd. - Taber
- BP Canada Energy Company - Calgary, Edmonton, Grande Prairie, Rocky Mountain House
- Chevron Energy Inc. - Calgary
- Cenovus Energy Inc. - Calgary, Edmonton, Grande Prairie, Rocky Mountain House
- CNOCOPhilsips Canada - Calgary, Atlantic French Corridor, Big Valley
- ConocoPhillips Canada - Calgary
- ConocoPhillips Canada - Calgary, Atlantic French Corridor, Big Valley
- CSBG Services - Treaty
- CSI Climate Control Inc. - Edmonton, Grande Prairie, Lac La Biche, Sounding Lake
- Devon Energy - Calgary, Edmonton, Grande Prairie, Rocky Mountain House
- Nexen Canada Ltd. - Calgary
- Nuvista Energy Ltd. - Calgary
- Paramount Resources Ltd. - Calgary
- Pembina Pipeline Corp. - Calgary
- Peace River Energy Inc. - Calgary, Edmonton, Grande Prairie, Lac La Biche, Sounding Lake
- Rexener Energy Inc. - Calgary
- Talisman Energy Inc. - Calgary, Grande Prairie, Lac La Biche, Sounding Lake
- Targa Resources - Calgary
- Tetra Tech - Calgary, Edmonton, Grande Prairie, Lac La Biche
- Total Energy Inc. - Calgary, Edmonton, Grande Prairie, Lac La Biche
- Wallenius Wilhelmsen - Calgary, Edmonton, Grande Prairie, Lac La Biche

For an up-to-date list of CIPEC opportunities, visit oee.nrcan.gc.ca/industrial/opportunities/14175

Leaders, visit oee.nrcan.gc.ca/industrial/opportunities/14175
CIPEC TRADE ASSOCIATIONS

Aerospace Industries Association of Canada (AIAC)
Alberta Food Processors Association (AFPA)
Alliance of Ontario Food Processors (AOFP)
Aluminum Association of Canada (AAC)
Atlantic Dairy Council
Automotive Parts Manufacturers Association (APMA)
Baking Association of Canada (BAC)
Brewers Association of Canada (BAC)
Canadian Association of Surface Finishing (CASF)
Canadian Association of Petroleum Producers (CAPP)
Canadian Chamber of Commerce
Canadian Construction Association (CCA)
Canadian Electricity Association (CEA)
Canadian Energy Pipeline Association (CEPA)
Canadian Fertilizer Institute
Canadian Foundry Association (CFA)
Canadian Fuels Association
Canadian Gas Association (CGA)
Canadian Lime Institute
Canadian Manufacturers & Exporters (CME)
 CME Alberta Division
 CME British Columbia Division
 CME Manitoba Division
 CME New Brunswick Division
 CME Newfoundland and Labrador Division
 CME Nova Scotia Division
 CME Ontario Division
 CME Prince Edward Island Division
 CME Quebec Division
 CME Saskatchewan Division
Canadian Meat Council (CMC)
Canadian Plastics Industry Association (CPIA)
Canadian Steel Producers Association (CSPA)
Canadian Vehicle Manufacturers’ Association (CVMA)
Cement Association of Canada (CAC)
Chemistry Industry Association of Canada
Council of Forest Industries (CFI)
Electro–Federation Canada
Fisheries Council of Canada (FCC)
Food and Consumer Products of Canada (FCPC)
Forest Products Association of Canada (FPCA)
FPInnovations
Mining Association of Canada (The)
North American Insulation Manufacturers Association (NAIMA Canada)
Ontario Agri Business Association (OABA)
Packaging Association of Canada (PAC)
Quebec Forest Industry Council
Rubber Association of Canada
Explorers and Producers Association of Canada (SEPAC)
Wine Council of Ontario (WCO)
CONTACTS – INDUSTRY AND TRANSPORTATION DIVISION
OFFICE OF ENERGY EFFICIENCY, NATURAL RESOURCES CANADA

Daniela DiBartolo
Director
Tel.: 613-996-6872
E-mail: Daniela.DiBartolo@nrcan-rncan.gc.ca

Melissa Sutherland
Chief, Industrial Partnerships
Tel.: 613-992-3422
E-mail: Melissa.Sutherland@nrcan-rncan.gc.ca

Bob Fraser
Senior Industrial Engineering and Technical Advisor
Tel.: 613-947-1594
E-mail: Bob.Fraser@nrcan-rncan.gc.ca

Sylvia Boucher
Chief, Training and Outreach
Tel.: 613-995-3504
E-mail: Sylvia.Boucher@nrcan-rncan.gc.ca

CIPEC – General Inquiries
Tel.: 613-947-4828
Fax: 613-992-3161
E-mail: info.ind@nrcan-rncan.gc.ca

Dollars to $ense Energy Management Workshops – General Inquiries
Tel.: 613-996-6585
Fax: 613-992-3161
E-mail: Dollarsto$enseWorkshops@nrcan-rncan.gc.ca